
碩士學位論文

First-Order Eikonal Phase Shift Analysis

 for 16O + 16O Elastic Scatterings

濟州大學校 大學院

物理學科

文  慧  英

2001 年 12 月



16O + 16O 탄성산란에 대한

 제 1차 Eikonal 위상이동 분석

指導敎授  金 瑢 柱

文  慧  英

이 論文을 理學 碩士學位 論文으로 提出함

2001 年 12 月

文 慧 英의 理學 碩士學位 論文을 認准함

審査委員長              印

委      員              印 

委      員              印

제주대학교 대학원

2001 年 12 月



First-Order Eikonal Phase Shift Analysis for
16
O + 

16
O Elastic Scatterings

Hye-Young Moon

(Supervised by professor Yong-Joo Kim)

  A thesis submitted in partial fulfillment of the requirement 

for the degree of Master of Natural Sciences

2001.  12.

This Thesis has been examined and approved

                                       2001.  12.

DEPARTMENT OF PHYSICS

 GRADUATE SCHOOL

CHEJU NATIONAL UNIVERSITY



목      차

SUMMARY ·····················································································································ⅰ

I. INTRODUCTION ········································································································1

II. THEORY ······················································································································4

 1. Scattering Amplitude ·······························································································4

 2. WKB Formula for the Nuclear Phase Shift ···················································5

 3. Eikonal Phase Shift and its First-order Correction ·····································6

III. RESULTS AND DISCUSSIONS ·······································································10

 1. Elastic Scattering Cross Section ········································································10

 2. Deflection Function and Nuclear Rainbow ······················································15

 3. Transmission Function and Partial Wave Reaction Cross Section ········· 16

 4. Effective Potential ··································································································19

 5. Effective Phase Shift ····························································································22

IV. CONCLUSIONS ······································································································25

REFERENCES ················································································································27



i

초 록

  Elab = 480 과 704 MeV 에서의 
16O + 16O 탄성산란을 제 1차 

Eikonal 위상이동을 이용하여 분석하 다.  계산결과는 실험값과 

비교적 잘 일치하 다.  Fuller의 포말리즘을 이용한 원측과 근측 

분해를 통하여 탄성 각분포에서 보여지는 진동현상은 근측과 원

측 간의 간섭현상으로 설명될 수 있었다.  고전적 편향함수를 이

용하여 Elab = 480 과 704 MeV 에서의 
16O + 16O 탄성산란 각각

의 경우에 핵 무지개 현상이 존재함을 알 수 있었다.  유효 퍼텐

셜과 유효 위상이동에서의 제 1차 Eikonal 보정의 역할이 논의되

었다.  실수 퍼텐셜이 강하고 허수 퍼텐셜이 약할 때 허수 퍼텐셜

에 대한 제 1차 Eikonal 보정 효과가 중요하다는 것을 알 수 있

었다.
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Ⅰ.  INTRODUCTION

  For the last two decades, the elastic scattering between heavy-ions has 

been studied by a number of people using a variety of theoretical methods, 

some of which are given in Chan et al. (1981), Satchler (1983), Frahn (1985), 

Brink (1985), Mermaz (1985), Vitturi et al. (1987), Charagi et al. (1990), 

Broglia et al. (1991), and Frobrich et al. (1996).  Usually, the heavy-ion 

elastic scattering is dominated by strong absorption, with the implication that 

the data are only sensitive to the surface of interaction region and the optical 

potential required to describe the measurements is not uniquely determined.  

However, the angular distribution for lighter heavy-ion elastic scattering, such 

as 
12
C + 

12
C and 

16
O + 

16
O systems, has shown the presence of strong 

refractive  effects with a clear signature of a nuclear rainbow phenomena 

(Brandan, 1988 ; Stiliaris et al., 1989).  Such a behavior was identified as 

being a typical refraction effect generated by the nuclear rainbow.  The 

nuclear rainbows seen in the elastic scattering angular distributions of lighter 

heavy-ion systems  unambiguously determine the major features of the 

optical potential.

  In recent, there has been a great deal of studies to describe the lighter 

heavy-ion elastic scattering.  Shallow imaginary potentials are found to be 

essential to describe various sets of elastic scattering data for 
12
C + 

12
C and 

16
O + 

12
C at intermediate energies (Brandan, 1988).  The elastic scattering 

data of 
16
O + 

16
O system at Elab = 250, 350 and 480 MeV has been measured 

and analyzed within the optical model using the density-dependent folding 

potential (Khoa et al., 1995).   Brandan and McVoy (Brandan and McVoy, 

1997) made a systematic study of the optical potentials for lighter heavy-ions.  

They made several interesting observations, especially on the characteristics 

of the ratios of the imaginary to real parts of the potentials and of the 

imaginary to real parts of the phase shifts.  Nicoli et al. (Nicoli et al., 1999) 

have measured the 
16
O + 

16
O elastic scattering at nine energies between Elab 
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= 75 and 124 MeV and described in terms of phenomenological and folding 

model potentials which reproduce the main features observed.

  The interpretation and description of scattering phenomena in heavy-ion 

reactions have been greatly facilitated by the application of semiclassical 

methods.  The widely used method for the analysis of elastic scattering data 

is the WKB approximation (Chan et al., 1981 ; Brink, 1985 ; Donnelly et al., 

1974).  The eikonal phase shift is derived from the integral equation by 

further approximating the WKB results.  Over the past several years, the 

eikonal approximation has been a useful tool to describe the heavy-ions 

elastic scattering.  A number of studies (Knoll Schaeffer, 1976 ; Waxman et 

al., 1981 ; Silveira et al., 1987 ; Fäldt et al., 1992 ; Aguiar et al., 1997 ; Cha  

and Kim, 1995 ; Kim and Cha, 2000) have been made to describe elastic 

scattering processes between heavy ions within the framework of the eikonal 

model.  The first- and second-order corrections to the zeroth-order eikonal 

phase shifts for heavy-ion elastic scatterings based on Coulomb trajectories 

of colliding nuclei are presented and it has been applied satisfactorily to the 

16
O + 

40
Ca and 

16
O + 

90
Zr systems at Elab =1503 MeV (Cha and Kim, 1995).  

Eliseev and Hanna (Eliseev and Hanna, 1997) have developed first- and 

third-order non-eikonal corrections to the Glauber model to know the 

possibility of observing a bright interior in the nucleus "viewed" by 

intermediate energy alpha particles (Eα=172.5 MeV), as a probe for the 
58
Ni 

nucleus.  Aguiar et al. (Aguiar et al., 1997) have discussed different schemes 

devised to extend the eikonal approximation to the regime of low bombarding 

energies in heavy-ion collisions.

  In recent, the 
16
O + 

16
O elastic scattering has been measured very 

accurately, up to large angles exhibiting down to very small cross sections 

and show the presence of strong refractive effects in the angular distributions 

(Khoa et al., 1995).  It is interesting to incorporate the first-order eikonal 

model formalism to include refractive 
16
O + 

16
O elastic scattering.  In this 

study, we analyze the elastic scatterings  of 
16
O + 

16
O system at Elab = 480 

and 704 MeV by using the first-order eikonal phase shift based on Coulomb 
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trajectories of colliding nuclei.  The presence of nuclear rainbow is examined 

from the semiclassical deflection function.  The near-side and far-side 

decomposition of the elastic cross sections due to the Fuller relationship 

(Fuller, 1975) are presented.  Some features of effective phase shift and 

effective potential are also investigated. In section Ⅱ, we provide the theory 

related with the first-order eikonal phase shift based on Coulomb trajectories 

of colliding nuclei and its related effective optical potential. Section Ⅲ 

contains results and discussions for first-order eikonal phase shift analysis.  

Finally, conclusions are presented in section Ⅳ.



4

Ⅱ.  THEORY

1. Scattering Amplitude

  In the case of elastic scattering between two identical spinless nuclei, the 

general expression of the differential cross  section is given by the following 

formula

(1)dσ
dΩ
=| f (θ )+ f (π -θ ) | 2.

The elastic scattering amplitude for spin-zero particles via Coulomb and 

short-range central forces is given by

(2)f (θ )=
1
ik ∑

∞

L=0
(L+

1
2
) (SL-1)PL( cosθ ).

Here, k= 1
ℏ

2μE  is the wave number and the scattering function SL  is 

related to the phase shift for the L-th partial wave, and μ  is the reduced 

mass.

  Since the Coulomb interaction between heavy-ions is strong, it is 

convenient to separate the Coulomb contribution by writing SL=S
N
L exp( 2iσL )  

where σL=argГ (L+1+ iη )  are the Coulomb phase shifts and 

η=μZ 1Z 2e
2/(ℏ 2k )  is the Sommerfeld parameter. Then, the scattering 

amplitude f (θ )  can be separated into the Rutherford and the nuclear parts by 

writing (Satchler, 1983 ; Brink, 1985)

(3)f (θ )= fR (θ )+ fN (θ )

where the Rutherford scattering amplitude fR (θ )  is given by

(4)fR (θ )=-
η

2k sin 2 (θ/2)
exp [2iσ0- iη ln ( sin

2 θ
2
)]

and the nuclear scattering amplitude fN (θ )  is expressed as

(5)fN (θ )=
1
i k ∑

∞

L=0
(L+

1
2
)exp (2 iσL )(S

N
L-1)PL ( cosθ ).
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The nuclear scattering function SNL  can be expressed by the nuclear phase 

shifts δL

(6)SNL= exp (2iδL ).

2. WKB Formula for the Nuclear Phase Shift

  Elastic scattering phase shifts for a partial wave L  are obtained by solving 

the Schrödinger equation

(7)d 2

dr 2
uL(r )+k

2(r )uL(r)=0

where,

(8)

k 2(r) =
2μ

ℏ 2 (E-V (r ))

V(r) = U (r)+VC (r)+
ℏ 2L (L+1)

2μr 2
.

In Eq.(8), U(r)  is the nuclear potential acting between the target and the 

projectile and VC (r)  is the Coulomb potential.  For large r, the wave 

function uL (r)  has the asymptotic form (Brink, 1985)

(9)uL(r) ≃ sin (k r-η ln2kr-
1
2
Lπ+σL+δL ).

  Suppose that there is one classical turning point at r t

(10)k(r t )=0

and the region r > r t  is allowed classically ( E >  V (r )) and r < r t  is 

classically forbidden ( E <  V (r )).  The WKB wave function in the classically 

allowed region is given (Brink, 1985)

(11)uL (r ) ≃ (k (r ))
-1/2sin (⌠⌡

r

r t
k (r )dr+

1
4
π).

The integral in WKB wave function can be rewritten as

(12)⌠
⌡

r

r t
k (r )dr = ⌠⌡

r

rC
kC (r)dr+[⌠⌡

r

r t
k (r )dr-⌠⌡

r

rC
kC (r )dr],
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where the first term is the Coulomb WKB integral and rC  is the Coulomb 

turning point given by

(13)r C = 
1
k {η+[η

2+(L+
1
2
)
2]
1/2

}.
The nuclear phase shifts can be found by combining Eq.(9) and Eq.(11) 

through the following relation,

(14)

sin (kr- 1
2
Lπ-η ln 2kr+σL+δL) ≃ sin (⌠⌡

r

r t
k (r)dr+

1
4
π)

= sin (⌠⌡
r

rC
kC (r )dr+[⌠⌡

r

rt
k (r )dr-⌠⌡

r

rC
kC (r )dr]+ 1

4
π).

Using the following relation

(15)sin (⌠⌡
r

rC
kC (r )dr+

1
4
π ) = sin (kr- 1

2
Lπ-η ln2kr+σL ),

Eq.(14) becomes

(16)

sin (⌠⌡
r

rC
kC (r )dr+

1
4
π+[⌠⌡

r

r t
k(r )dr-⌠⌡

r

rC
kC (r )dr ] )

= sin (kr- 1
2
Lπ-η ln2kr+σL+[⌠⌡

r

rt
k (r )dr-⌠⌡

r

rC
kC (r )dr ] ).

Therefore, WKB formula for the nuclear phase for r → ∞  is given by (Chan 

et al., 1981 ; Brink, 1985)

(17)δL ≃ 
⌠
⌡

∞

r t
k (r )dr-⌠⌡

∞

rC
kC (r )dr

where,

(18)

(19)

kC (r) = k

ꀎ

ꀚ

︳︳︳1-(
2η
kr
+
(L+

1
2
)
2

k 2r 2
)

ꀏ

ꀛ

︳︳︳

1/2

,

k(r) = k

ꀎ

ꀚ

︳︳︳1-(
2η
kr
+
(L+

1
2
)
2

k 2r 2
+
U (r)
E

)

ꀏ

ꀛ

︳︳︳

1/2

.

3. Eikonal Phase Shift and its First-Order Correction

  In the high energy limit, we can consider the nuclear potential as a 

perturbation.  Thus, the turning point r t  may be taken to be coincident with 
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rC, and

(20)

k(r)-kC (r) = k [1-(
2η
kr
+
(L+

1
2
)
2

k 2r 2
+
U (r)
E

)]
1/2

-k [1-(
2η
kr
+
(L+

1
2
)2

k 2r 2
)] 1/2

= kC (r) (1- k 2U (r)

k2CE )
1/2

-kC (r).

Since wave number k  is k=
1
ℏ

2μE, Eq. (20) is arranged as

(21)

k (r)-kC (r) = kC (r) (1-
2μU (r)

ℏ 2k2C (r) )
1/2

-kC (r)

= kC (r) [1- μU (r)

ℏ 2k2C (r)
-
μ2U 2 (r)

2ℏ 4k4C (r)
-
μ3U 3 (r)

2ℏ 6k6C (r)
+…]-kC (r)

≃ -
μU (r)

ℏ 2kC (r)
-
μ2U 2 (r)

2ℏ 4k3C (r)
-
μ3U 3 (r)

2ℏ 6k5C (r)
.

Thus, the nuclear phase shift δL  in Eq. (17) can be rewritten

(22)

δL =
⌠
⌡

∞

rt
k (r )dr-⌠⌡

∞

rC
kC (r )dr

≃ ⌠
⌡

∞

rC
k (r )dr-⌠⌡

∞

rC
kC (r )dr

= ⌠
⌡

∞

rC
[k (r )-kC (r )]dr

= ⌠
⌡

∞

rC [-
μU (r)

ℏ 2kC (r)
-
μ2U 2 (r)

2ℏ 4k3C (r)
-
μ3U 3 (r)

2ℏ 6k5C (r) ]dr
= -

μ

ℏ 2
⌠
⌡

∞

rC

U (r )
kC(r )

dr-
μ

2ℏ 4
⌠
⌡

∞

rC

U 2 (r )

k3C (r)
dr-

μ3

2ℏ 6
⌠
⌡

∞

rC

U 3 (r )

k5C (r )
dr

with r= r2C+z
2.  The first term in the above equation is the ordinary 

Coulomb-modified eikonal phase shift function and it can be written

δ0L (rC ) = -
μ

ℏ 2
⌠
⌡

∞

rC

U (r )
kC (r )

dr

= -
μ

ℏ 2k
⌠
⌡

∞

rC

rU (r )

r 2-r2C
dr

= -
μ

ℏ 2k
⌠
⌡

∞

rC

U( r2C+z
2 )

z
zdz
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(23)= -
μ

ℏ 2k
⌠
⌡

∞

0
U ( r2C+z

2 )dz.

And the second term in Eq. (22) is the first-order correction to eikonal phase 

shift and it may be written

(24)

δ1L (rC ) = -
μ2

2ℏ 4
⌠
⌡

∞

rC

U 2 (r )

k3C (r)
dr

= -
μ2

2ℏ 4k 3
⌠
⌡

∞

rC

r 3U 2 (r )

(r 2-r2C )
3/2 dr

= -
μ2

2ℏ 4k 3
⌠
⌡

∞

0
r 2U (r ) z 3dr

= -
μ2

2ℏ 4k 3
⌠
⌡

∞

0
(1+

r2C

z 2
)U 2 (r )dz

= -
μ2

2ℏ 4k 3
⌠
⌡

∞

0
(1+

r2C

z 2
)U 2 (r )dz

= -
μ2

2ℏ 4k 3
(1+rC

∂
∂rC

)⌠⌡

∞

0
U 2( r2C+z

2 )dz.

Summing up, the Coulomb-modified eikonal phase shift and its first-order  

correction are expressed following as

(25)

(26)

δ 0L(r C ) = -
μ

ℏ 2k
⌠
⌡

∞

0
U ( r2C+z

2 )dz,

δ 1L(r C ) = -
μ 2

2ℏ 4k 3 (1+r C
∂
∂r C )

⌠
⌡

∞

0
U 2( r2C+z

2 )dz.

The first-order eikonal correction term of the phase shift, δ 1L(rC )  in Eq. (26), 

can further be expressed as following

(27)δ
1
L(rC ) = -

μ 2

ℏ 4k 3
⌠
⌡

∞

0 [U
2
(r )+rU (r )

∂U (r )
∂r ]dz.

The closed expression of the effective phase shift function including up to the 

first-order correction term may be written as

(28)δ L(rC ) = δ
0
L(rC )+δ

1
L(rC ) = -

μ

ℏ 2k
⌠
⌡

∞

0
U eff(r )dz,

where U eff (r )  is the effective optical potential given by

(29)U eff (r ) = U {1+ μ

ℏ 2k 2 [U+r
∂U
∂r ] }.

We can see that the eikonal phase shift calculation including the first-order 

correction is equivalent to a zeroth-order calculation with effective potential 
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U eff(r ).  By taking U(r )  as the squared Woods-Saxon forms given by

(30)U(r) = -
V 0

(1+e
( r-R v )/a v )

2 -i
W 0

(1+e
( r-R w )/a w ) 2

,

with R v,w=r v,w (A
1/3
1 +A

1/3
2 ), we can use the phase shifts, Eqs. (25)-(26) in 

the general expression for the elastic scattering amplitude, Eqs. (1) and (2).
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Ⅲ.  RESULTS AND DISCUSSIONS

1. Elastic Scattering Cross Section

  As in the preceding section, the Coulomb-modified eikonal phase shifts δ0L  

and δ1L  have been used to calculate the elastic differential cross sections for 

16O + 16O system at Elab = 480 and 704 MeV.  Table 1 shows the parameters 

of the fitted Woods-Saxon squared potential.  The six potential parameters 

are adjusted so as to minimize the χ2/N  given by

(31)χ2/N = 
1
N ∑

N

i=1 [
σ iexp -σ

i
cal

△σ iexp ]
2

.

In Eq. (31), σ iexp (σ
i
cal )  and △ exp

 are the experimental (calculated) cross 

sections and uncertainties, respectively, and N  is the number of data used in 

the fitting.  The calculated results of the differential cross sections for the 

elastic scattering of 16O + 16O system at Elab = 480 and 704 MeV are 

presented in Figs.1 and 2 together with those measured experimentally (Khoa 

et al., 1995 ; Khoa et al., 2000).  In Fig. 1 and Fig. 2, the solid curves are 

the results for the first-order eikonal phase shifts, while the dashed curves 

are the results of the zeroth-order eikonal phase shifts.  As seen in these 

figures, there are the substantial differences between the dashed and solid 

curves when compared to the experimental results.  The first-order eikonal 

model reproduce the  characteristic refractive patterns observed 

experimentally.  The  calculated angular distributions are nearly identical at 

forward angles  but are qualitatively different at large angles.  As a whole, 

our  calculations lead to reasonable predictions over the whole angular range 

for the elastic scattering data in the 16O + 16O system at Elab = 480 and 704 

MeV, respectively.  Also, the reasonable χ2/N  values are obtained in the  
16
O 

+ 
16
O system at Elab = 480 and 704 MeV, respectively, as listed in table 1.
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TABLE 1: Parameters of the fitted Woods-Saxon squared potential by using 

the first-order eikonal phase shift analysis for the 
16
O + 

16
O elastic  

scattering at Elab = 480 and 704 MeV.  10% error bars are adopted to obtain 

χ2/N  value.

Energy V 0 rv av W 0 rw aw RS σRS σR χ2/N

(MeV) (MeV) (fm) (fm) (MeV) (fm) (fm) (fm) (mb) (mb) δ
0

δ
0
+δ

1

480 233 0.897 1.299 55.4 1.107 1.275 7.04 1558 1626 11.61 6.10

704 278 0.894 1.370 48.9 1.186 0.903 6.76 1437 1469 8.71 5.88

  In order  to understand the nature of angular distributions for 
16
O + 

16
O 

system at Elab = 480 and 704 MeV, the near- and far-side decompositions of  

scattering amplitudes are also performed with the first-order correction to the 

eikonal phase shifts by following Fuller's formalism (Fuller, 1975).  The 

contributions of the near- and far-side components to the elastic scattering 

cross sections are shown in Fig. 3 along with the differential cross sections.  

The differential cross section is not just a sum of the near- and far-side 

cross sections but contains the interference between the near- and far-side 

amplitudes as shown in Fig. 3.  The oscillations observed on the elastic 

scattering angular distributions of 
16
O + 

16
O system at Elab = 480 and 704 

MeV are due to the interferences between the near- and far-side components.  

The magnitudes of the near- and far-side contributions are equal, crossing 

point, at θ = 8.4 °  for Elab = 480 MeV and θ = 4.8 °  for Elab = 704 MeV, 

respectively.  Figure 3 shows the near-side dominance at angles less than 

these values due to the long-range repulsive Coulomb interaction.  However, 

the far-side contributions to the cross sections have become dominant at the 

regions greater than the crossing angles due to the short-range attractive 

nuclear interaction.
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2. Deflection Function and Nuclear Rainbow

  It is known that when the absorptive potential is weak and the real  

potential is strong, the contributions to the scattering from the  interior 

region are large enough to be observed.  In analogy to optics, these 

contributions are called refractive, since the scattered particles have partially 

penetrated the target nucleus.  This situation is interpreted as "nuclear 

rainbow scattering", because the intensity maximum is built by many 

trajectories being essentially deflected the same scattering angle; the nuclear 

rainbow angle θ nr.  The nuclear rainbow angle is obtained from the classical 

deflection function given by

(32)θL = 2
d
dL
(σL+ ReδL).

This deflection angle is a semiclassical treatment of a trajectory with angular 

momentum L  and calculated from the Coulomb phase σL  and real nuclear 

phase δL.

  The term "nuclear rainbow" shows the differential cross section for 

scattering to the negative angles from the far-side component of the target.  

In a rainbow situation, the strong nuclear force attracts the projectiles 

towards the scattering center and deflects them to negative scattering angles, 

which correspond to the region of the rainbow maximum.  As shown in table 

1, the absorption in 16O + 16O system is weak enough to allow refracted 

projectiles to populate the elastic channel and typical nuclear rainbow effects 

could be observed in the angular distribution.  In Fig. 4, we can find the 

nuclear rainbow angle values θ nr=-42.6 °  and θ nr=-32.7 °  for the 
16
O + 

16O system at Elab = 480 and 704 MeV, respectively, which evidently prove a 

presence of the nuclear rainbow with unambiguous clarity in this system.  It 

can be notice that the nuclear rainbow angle values decrease as the incident 

energy increases.  Such a behavior seems to correspond to the incident 

energy and the ratio of the imaginary to real part of a scattering potential.
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3. Transmission Function and Partial Wave Reaction Cross Section

  The transmission function TL=1-|SL |
2  is plotted versus the orbital 

angular momentum in Fig. 5 along with the partial wave reaction cross 

section σL  for 
16O + 16O system at Elab = 480 and 704 MeV, respectively.  

Transmission function can be explained using the imaginary part of the 

effective optical potential.  As shown Fig. 5(a), the lower partial waves are 

totally absorbed and the TL  is decreased very rapidly in a narrow localized 

angular momenta zone.

  We can see in Fig. 5(b) that the values of the partial reaction cross section 

increase linearly up to L= 55 for Elab = 480 MeV and L= 66 for Elab = 704 

MeV, respectively.  Beyond these L-values, the partial reaction cross 

sections decrease quadratically.  A further investigation of the situation can 

be gained by looking at the strong absorption radius ( RS ) and the reaction 

cross section ( σ R S ) given in table 1.  The strong absorption radius is defined 

as the distance for which TL=1/2, i.e., the distance where the incident 

particle has the same probability to be absorbed as to be reflected.  The 

strong absorption radius provides a good estimate of the reaction cross 

section, σRS=πR
2
S
.
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4. Effective Potential

  In order to illustrate the differences between the effective and nominal 

potentials, we plot the real and imaginary parts of these potentials in Fig. 6 

and Fig.7.  In these figures, the solid curves are the real and imaginary parts 

of effective potentials U eff
 given in Eq. (29), while the dashed curves are the 

real and imaginary parts of the nominal potentials U (r )  given in Eq. (30).  

As shown in these figures, there is a dramatic difference between the two 

potentials, especially for the imaginary part.  We can see in Eq. (29) that the 

effective imaginary potential with the first-order eikonal correction depends on 

the product of the real and  imaginary potentials and their derivatives.  Thus 

the effective imaginary  potentials rapidly increase until they reach maximum 

value in the central  region of the nucleus, and then they reach minimum in 

the surface region.  A drastic increase of the imaginary potential for small 

values of r   corresponding to increased transmission is mainly due to the 

correction term in Eq. (29).  In the traditional eikonal model, it is assumed 

that the imaginary part of the potential is responsible for the absorption 

process in the nuclear reaction and its shape should not be affected by the 

real part.  Nevertheless, in the present eikonal  model with the first-order 

correction, we can find that the drastic increase on the absorptive potential in 

the small r  region are due to the larger real potential compared with 

imaginary one.

  In the small r  region, the effective imaginary potential of the  first-order 

eikonal model is small compared with the effective real potential.  Such a 

small ratio makes it possible to interpenetrate each other between the 

projectile and target nuclei.  As a result, the projectile ion can penetrate the 

nuclear surface barrier of the target, and the cross section becomes sensitive 

to the value of the real potential in the central region.
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5. Effective Phase Shift

  Such increase of the effective potential in the small r  regions are also 

reflected in the phase shift function.  Fig. 8 and Fig. 9 show the angular 

momentum dependence of the real and imaginary parts of zeroth- and 

first-order eikonal phase shift.  The solid curves are the phase shifts of 

first-order eikonal model, while the dashed curves are the results of the 

ordinary eikonal model.  On the whole, the real phase shifts vanish nearly 

quadratically as the L  increase.  The real phase shifts of the  first-order 

eikonal corrections are less values than the results of  zero-order eikonal 

phase shifts at L <  17  for Elab = 480 MeV and L <  21  for Elab = 704 MeV, 

however, are greater ones at these L  values for Elab =  480 and 704 MeV, 

respectively.  However, we can see that the real potential gives a drastic 

change of the imaginary phase shifts.  In Fig. 9, the dramatic variations of 

imaginary phase shifts are found in the first-eikonal corrections, as expected.  

We can also see in the imaginary phase shifts of the first-order eikonal 

corrections are less values at L <  20  and L <  27  compared to the results of 

zeroth-order eikonal phase shifts, however greater ones at these L  values for 

Elab = 480 and 704 MeV, respectively.  The strong absorption in the nuclear 

surface plays a dominant role to the scattering amplitude and thus to the 

characteristic diffraction pattern of the angular distribution. The large angle 

behavior is sensitive to the details of the real optical potential over a wide 

radial region from the nuclear surface towards the interior.
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Ⅳ.  CONCLUSIONS

  In this study, we have analyzed the elastic scatterings of 
16
O + 

16
O system 

at Elab = 480 and 704 MeV by using the first-order eikonal phase shift based 

on the Coulomb trajectories of colliding nuclei and squared Woods-Saxon 

potential.  We have found that the calculated results using the first-order 

eikonal phase shift are reasonable agreements with the observed data in this 

system.  Through near- and far-side decompositions of the cross section, we 

have shown that the oscillations of 
16
O + 

16
O system are due to the 

interferences between the near- and far-side amplitudes.   All of cases show 

near-side dominance from the long-range repulsive Coulomb interaction at 

forward angles and far-side dominance from the short-ranged attractive 

nuclear interaction at large angles.  We have obtained the nuclear rainbow 

angle values θ nr=-42.6 °  and θ nr=-32.7 °  for the 
16O + 16O system at 

Elab = 480 and 704 MeV, respectively, through a classical deflection function, 

and they evidently prove a presence of the nuclear rainbow in this system.  

The nuclear rainbow angle value decreases as the incident energy increases 

in this system.  The partial reaction cross section increase linearly up to 

L=55  for Elab = 480 and L=66  for Elab = 704 MeV, respectively.  Beyond 

this L  value, the partial reaction cross sections have decrease quadratically.  

Furthermore, the strong absorption radius provides a good estimate of the 

reaction cross section, σRS=πR
2
S
 .

  The strongly real and weakly imaginary optical potentials are found and 

they support the presence of nuclear rainbows in the angular distribution of 

this system.  We have also found that the effect of first-order eikonal 

correction on the imaginary potential is important in this case.  The strongly 

real potential give a drastic effect on the effective imaginary potential for 16O 

+ 16O system at Elab = 480 and 704 MeV, respectively.  The ratio of 

imaginary to real part of effective potential is very small in the central region 
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and such a small ratio value makes it possible to interpenetrate each other 

between the projectile and target nuclei.  The refractive part, dominated by 

the far-side component of the scattering amplitude is sensitive to the real 

heavy-ion optical potential at small radii.  The imaginary effective potential 

of first-order eikonal model have pronounced minimum between central and 

surface regions of nucleus, while the nominal imaginary potential increase 

monotonically.  Such effective potentials are reflected in the phase shift 

functions.  The strongly real potential give a drastic effect on the imaginary 

phase shifts for 
16
O + 

16
O system at Elab = 480 and 704 MeV, respectively.  

We can also see in the imaginary phase shift calculated with the real 

potential that an absorption of partial waves for large angular momentum 

increases, whereas the absorption decreases for small angular momentum, 

compared to the result without the real potential.  The strong absorption in 

the nuclear surface plays a dominant role to the scattering amplitude and 

thus to the characteristic diffraction pattern of the angular distribution.  The 

large-angle behavior is sensitive to the details of the real optical potential 

over a wide radial region from the nuclear surface towards the interior.
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