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ABSTRACT 

 

This report was designed to study inhibitory effect of sea lettuce (Ulva fasciata) extract 

(UFE) on pro-inflammatory cytokine production in bone marrow-derived macrophages 

(BMDM) and dendritic cells (BMDC). Inflammation is primary localized and protective 

response of host against microbial infection and autoimmune disorders. Macrophages and 

dendritic cells are major part of mammalian immune system and play important role in 

productions of pro-inflammatory cytokines. Thus, here we study the anti-inflammatory effect 

of UFE on CpG-stimulated BMDMs and BMDCs and human embryonic kidney cell line 

293T(HEK293T)  cells. The UFE (0-50 μg/mL) pre-treatment showed a dose dependant 

inhibitory effect on interlukin (IL)-12 p40, IL-6, and tumor necrosis factor (TNF)-α 

productions in CpG-stimulated BMDMs and BMDCs as compared to non-treated controls. 

The UFE pre-treatment exhibited strong inhibitory effect on the phosphorylation of p38 

mitogen-activated protein kinase (MAPK) while it showed moderate inhibition on nuclear 

factor (NF)-κB activation as indirectly evaluated by degradation of IκBα. In activator protein 

(AP)-1 and NF-κB reporter gene assay, the UFE pre-treatment showed moderate inhibitory 

effect on both AP-1 and NF-κB dependent reporter gene activities. Thus, these results 

suggest that inhibitory effect of UFE on pro-inflammatory cytokine production may correlate 

with partial inhibition of both AP-1 and NF-κB pathways. Extracts from the U. fasciata has 

been previously reported to exhibit broad spectrum anti-bacterial activity and antioxidant 

activity. The present study suggests that UFE has an inhibitory effect on productions of pro-

inflammatory cytokines, TLR9-dependent NF-κB and AP-1 activation and thus warrant 

further studies concerning potential uses of UFE. Hence, our data warrant further studies 

concerning potentials of sea lettuce for medicinal food. 
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1. Introduction 

 

Inflammation is primary localized and protective response of host against microbial 

infection and autoimmune disorders. Hence, inflammatory response is vital for proper 

function of innate immune system which ultimately results in protection of host against 

pathogen and tissue injury (1). Pathogen associated molecular patterns are highly conserved 

in microorganism and are recognized by pattern recognition receptors including Toll-like 

receptors (2). Toll-like receptors are major type of pattern recognition receptors which play 

essential role in detecting several types of pathogen associated molecular patterns (3, 4).  

Macrophages and dendritic cells are major cellular components of mammalian 

immune system. These cells are mainly responsible for detection of pathogen associated 

molecular patterns and activation of innate immune response. Dendritic cells are called as 

antigen presenting cells as their primary function is to process the antigen and present it on 

the surface to other cells of the immune system (5). The main function of macrophages is to 

phagocytose and then digest the harmful stimuli. Stimulation of macrophage and dendritic 

cells results in productions of interleukin (IL-12 p40), IL-6 and TNF-α (6, 7).  

Bacterial DNA consists of unmethylated CpG dinucleotides which can stimulate 

mammalian immune cells by interacting with TLR9 (8). Detection of CpG by TLR9 results 

in activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and 

mitogen-activated protein kinase (MAPK) signaling pathway, leading to synthesis of pro-

inflammatory cytokines (9, 10). Stimulation of TLR9 can trigger phosphorylation and 

subsequent ubiquitination and degradation of IκB leading to activation of NF-κB (7). The 

activated NF-κB then translocates to the nucleus and thus results in transcription of NF-κB-

regulated genes (7). MAPK is one of the main signal transduction pathways which belong to 

a large family of serine/threonine kinases. MAPKs have three well characterized subfamilies 

including extracellular signal-regulated kinases (ERK), the c-Jun NH2-terminal kinases 



 

- 2 - 

 

(JNK), and the p38 family of kinases (p38 MAPKs) (11). The p38 MAPKs are involved in 

expression of multiple pro-inflammatory cytokines which in turn play important role in 

innate immunity (12).  

Marine algae contain a diverse range of bioactive compounds and being used in 

pharmaceutical, cosmetic, food and nutraceutical industries (13). Ulva fasciata is bright 

green to dark green marine alga and also called as limu palahalaha or sea lettuce and 

commonly consumed by humans in many parts of the world. U. fasciata could be used to 

control the body weight and in prevention of gastrointestinal diseases as it contains high 

dietary fiber content (14). Extracts from the U. fasciata has been previously reported to 

exhibit broad spectrum anti-bacterial activity (15, 16). In addition to antibacterial activity, U. 

fasciata also possess antioxidant activity (17). However, effect of U. fasciata ethanol extract 

(UFE) on innate immune response has been barely studied in terms of its influence on 

primary murine bone marrow-derived macrophages (BMDMs) and dendritic cells (BMDCs). 

Thus, here we study the anti-inflammatory effect of UFE on CpG-stimulated BMDMs, 

BMDCs and human embryonic kidney cell line 293T (HEK293T) cells. 
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2. Materials and Methods 

 

2.1. Preparation of U. fasciata extract  

Thalli of Ulva fasciata Delile were collectedon Jeju Island, Korea, on October 2008. A 

voucher specimen (JBRI20025) has been deposited at the herbarium of Jeju Bio diversity 

Research Institute. The materials for extraction were cleaned, dried at room temperature for 

one weekand ground into a fine powder. The dried alga (100g) was extracted with 80% 

ethanol (EtOH; 2L) at room temperature for 24 h and then evaporated under a vacuum. The 

U.fasciata ethanol extract (UFE, 21g) was suspended in water (4L). 

 

2.2. Mice  

Six-week-old female C57BL/6 mice were purchased from Orient Bio Inc. (Seongnam 

Si, South Korea) and maintained under specific pathogen-free conditions. All mice were 

maintained and used in accordance with institutional and National Institutes of Health 

guidelines. All animal procedures were approved by and performed according to the 

guidelines of the Institutional Animal Care and Use Committee of Jeju National University 

(#2010-0028). 

 

2.3. Cell cultures and measurement of cytokine production  

To grow BMDMs and BMDCs, wild-type six-week-old female C57BL/6 mice were 

used (18). The bone marrow cells from wild-type and mutant mice were obtained from tibia 

and femur of mice by flushing with DMEM (Invitrogen, CA, USA) containing 10% heat-

inactivated FBS, 100 U of penicillin G and streptomycin. The 1×10
7
 bone marrow cells were 

cultured in 10 ml of DMEM medium containing glutamine, 20% heat-inactivated FBS, 100 

U of penicillin G, streptomycin and 30% L929 cell supernatant containing M-CSF in 100 

mm petri dish (BD Falcon, NJ, USA) at 37°C in humidified 5% CO2 for 6 days. At day 6 of 
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culture, cells were harvested with cold PBS, washed, resuspended in DMEM supplemented 

with 10% FBS and used at a density of 2×10
5
 cells/well in a 24 well plate for experiments. 

Bone Marrow-derived Dendritic Cells (BMDCs) were grown from wild-type and various 

knockout mice. Briefly, bone marrow from tibia and femur was obtained as described above, 

and bone marrow cells were cultured in RPMI 1640 (Gibco BRL, Grand Island, NY)  

medium containing 10% heat-inactivated FBS, 50 µM of 2-ME, and 2 mM of glutamine 

supplemented with 3% J558L hybridoma cell culture supernatant containing GM-CSF. The 

culture medium containing GM-CSF was replaced every other day. At day 6 of culture, 

nonadherent cells and loosely adherent DC aggregates were harvested, washed, resuspended 

in RPMI 1640 supplemented with 5% FBS and used at a density of 2×10
5
 cells/ml for 

experiments unless mentioned otherwise (18). Briefly, bone marrow cells were differentiated 

in RPMI 1640 medium containing granulocyte-macrophage colony-stimulating factor for 

dendritic cells generation. For BMDMs, bone marrow cells were differentiated in DMEM 

medium containing macrophage colony-stimulating factor. For BMDMs and BMDCs, on 

day 6 of incubation the cells were harvested and seeded in 48-well plates, and then treated 

with the UFE for 1 h before stimulation with CpG (1 μM). Supernatants were harvested 18 h 

after stimulation. Concentrations of murine IL-12 p40, IL-6, and TNF-α in the culture 

supernatants were measured by ELISA (BD PharMingen, San Jose, CA, R&D system, 

Minneapolis, MN). 

 

2.4. Cell viability assay  

To assess cell viability standard procedure of 3-(4,5-dimethyl-2,5thiazolyl)-2,5 

diphenyl tetrazolium bromide (MTT) assay was used. Briefly, the cells at a concentration of 

1×10
6 
cells were seeded on 96-well culture plate. After incubation for 1h at 37℃, cells were 

treated with extracts at various concentrations for 18 h. Cells were added 0.2mg MTT 

(Sigma, MO, USA) and then incubated for 4 h at 37℃. The plate was centrifuged and the 
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supernatants were aspirated. The formazan crystals in each well were dissolved in 250 μl 

dimethyl sulfoxide (DMSO) (AMresco, OH, USA). Absorbance was measured at 

wavelength of 540 nm. 

 

2.5. Western blot analysis  

This was performed using standard techniques as previously described (19). Briefly, 

BMDMs were dispensed to 60-mm culture dishes (Nunc, Roskilde, Denmark) at 4×10
6
cells 

per dish and cultured for 24 h at 37
o
C. The cells were pre-treated with or without UFE (25 

µg/mL) for 1 h before treatment with CpG for the indicated time points. The cells were 

collected and then lysed in lysis buffer (PRO-PREP lysis buffer, iNtRON Biotechnology, 

Seongnam, South Korea). A protein sample (30 µg) was subjected to electrophoresis in 10% 

SDS-polyacrylamide gels and transferred to a polyvinylidene fluoride membrane (Bio-Rad, 

Hercules, CA). The membrane was incubated with 1/1,000-diluted rabbit polyclonal 

antibodies that specifically recognize phospho-p44/42 (P-ERK1/2), p44/42 MAPK, phospho-

p38, p38 MAPK and phospho-SAPK/JNK, SAPK/JNK, phospho-IκBα or IκBα (Cell 

Signaling Technology, MA, USA), β-actin (Santacruz biotechnology, INC, USA). After 

washing, the membrane was incubated with a horseradish peroxidase-linked goat anti-rabbit 

IgG (Cell Signaling Technology) and immune active bands were detected as previously 

described (Yun et al., 2009). Densitometric analyses of images were performed using image 

J software, version 1.46r (Http://rsb.info.nih.gov/nih-image/). 

 

2.6. Luciferase assay  

For AP-1 and NF-κB reporter assays, HEK293T cells were plated in 24-well plates 

and grown overnight. Cells were transfected using Fugene 6 (Roche, Indianapolis, USA) 

with a AP-1 or NF-κB reporter gene, pRLnull (Promega, Madison, WI) and pcDNA3 (empty 

vector) or murine TLR9-encoding pcDNA3 provided as a kind gift by Prof. R. Medzhitov 
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(Yale University, CT, USA). After incubation of 24 h, cells were pre-treated with UFE for 1 

h before stimulation with CpG (1 μM). After further incubation for 18 h, cells were lysed in 

a passive lysis buffer (Promega, Madison, WI), and firefly luciferase versus renilla activities 

were measured using a dual luciferase reporter assay system (Promega, Madison, WI). 

 

2.7. Data analysis  

All experiments were performed at least three times, and the data are presented as 

mean±standard deviation (SD) of three independent experiments. One-way analysis of 

variance (ANOVA) was used to evaluate the data at significance levels *p<0.05 and 

**p<0.01. 
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Table 1. Antibodies used in Western blot analysis on BMDMs 

Antibody Origin Company 

Phospho-ERK1/2 rabbit polyclonal Cell signaling Technology 

p38/MAPK rabbit polyclonal Cell signaling Technology 

Phospho-p38/MAPK rabbit polyclonal Cell signaling Technology 

Phospho-JNK1/2 rabbit polyclonal Cell signaling Technology 

IκBα rabbit polyclonal Cell signaling Technology 

Phospho-IκBα rabbit polyclonal Cell signaling Technology 

β-actin rabbit polyclonal Santa Cruz Biotechnology 
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3. Results 

 

3.1. Effects of UFE on cell viability in BMDCs and BMDMs 

To evaluate the effect of Seaweed extracts on cell viability was assessed using MTT 

assay. We observed little or no effect of Seaweed extracts on cell viability of BMDCs (Fig. 1) 

and BMDMs (Fig. 5) at the concentration range.  

 

3.2. Inhibitory effects of Ulva fasciata extracton IL-12 p40, IL-6, and TNF-α production 

in CpG-stimulated BMDCs and BMDMs  

Macrophages and dendritic cells have a major role in productions of key pro-

inflammatory cytokines (7). Hence, we investigated the ability of UFE to inhibit CpG-

stimulated IL-12 p40, IL-6 and TNF-α productions in BMDCs and BMDMs. CpG induced 

significantly increased IL-12 p40, IL-6 and TNF-α productions in BMDCs (Fig. 2, 3, 4) and 

BMDMs (Fig. 6, 7, 8). The UFE treatment alone showed no productions of cytokines. The 

UFE treated cells exhibited strong dose-dependent inhibition of IL-12 p40 and TNF-α 

productions in BMDMs (Fig. 6, 8). However, its inhibitory effect was moderate on IL-6 

production in CpG-stimulated BMDMs. Pre-treatment of UFE also resulted in a dose 

dependent inhibition of IL-12 p40, IL-6 and TNF-α productions in CpG-stimulated BMDCs 

as compared to non-treated control (Fig. 2, 3, 4). SB203580, an inhibitor of cytokine 

suppressive binding protein/p38 mitogen-activated protein kinase, was used as a positive 

control (20). To confirm the anti-inflammatory activity of UFE, cell viability was 

simultaneously determined by using colorimetric MTT assay and as a result, the UFE had 

little or no effect on BMDCs and BMDMs at the indicated concentrations. Taken together, 

these data show that UFE has an inhibitory effect on pro-inflammatory cytokine productions 

in CpG-stimulated BMDCs and BMDMs. 
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3.3. Effects of Ulva fasciata extract on MAPK phosphorylation by CpG-stimulated 

BMDMs 

Engagement of TLR9 by CpG triggers the activation of NF-κB and MAPK pathways 

(7). Thus, we investigated the effect of UFE treatment on MAPK phosphorylation and NF-

κB activation in CpG-stimulated BMDMs by western blot analysis (Fig. 9, 10). NF-κB 

activation was indirectly evaluated by IκBα degradation. All three MAPKs became 

phosphorylated in CpG-stimulated BMDMs (Fig. 9). The UFE pre-treatment exhibited 

strong inhibitory effect on the phosphorylation of p38 MAPK while it showed no significant 

inhibition on ERK1/2 and JNK1/2 phosphorylation (Fig. 9).  

 

3.4. Effects of Ulva fasciata extract on IκBα degradation by CpG-stimulated BMDMs 

CpG stimulation was able to induce IκBα degradation within 30 min of stimulation 

(Fig. 10). The amount of IκBα protein returned to baseline levels after 60 min of post-

stimulation. However, UFE pre-treatment partially blocked the IκBα degradation, and hence 

the activation of NF-κB in CpG-stimulated BMDMs (Fig. 10). Taken together, these data 

suggest that UFE strongly inhibited the phosphorylation of p38 MAPK while it marginally 

inhibited NF-κB activation.  

 

3.5. Effects of Ulva fasciata extract on NF-κB and AP-1 reporter activity in HEK-293T 

cells 

Activation of NF-κB pathway results in translocation of NF-κB into the nucleus where 

it activates the expression of NF-κB target genes (3). To assess the inhibitory effect of UFE 

on CpG-stimulated NF-κB transcriptional activity, the NF-κB reporter gene assay was 

performed (Fig. 11). The HEK293T cells transfected with empty pcDNA3 showed no NF-

κB-dependent luciferase activity upon CpG-stimulation. In contrast, the HEK293T cells 

transfected with TLR9-expressing plasmid exhibited strong NF-κB-dependent luciferase 
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activity upon CpG-stimulation. However, UFE pre-treatment exhibited moderate dose-

dependent inhibition of NF-κB-dependent luciferase activity (Fig. 11, *p<0.05).  

 

3.6. Effects of Ulva fasciata extract on AP-1 reporter activity in HEK-293T cells 

We can conclude that UFE has moderate inhibitory effect on TLR9-dependent NF-κB 

activation upon CpG-stimulation. Activation of MAPK induces increased AP-1 

transcriptional activity which in turn leads to expression of multiple AP-1-associated genes 

including pro-inflammatory cytokines (3). To investigate whether the UFE had inhibitory 

effect on CpG-stimulated AP-1 transcriptional activity, the AP-1 reporter gene assay was 

performed (Fig. 12). The HEK293T cells transfected with empty pcDNA3 showed little AP-

1-dependent luciferase activity upon CpG-stimulation. However, the HEK293T cells 

transfected with TLR9-expressing plasmid exhibited robust AP-1-dependent luciferase 

activity upon CpG-stimulation. In contrast, UFE pre-treatment showed moderate inhibition 

of AP-1-dependent luciferase activity (Fig. 12, *p<0.05). Taken together, our data suggest 

that UFE has a moderate inhibitory effect on TLR9-dependent NF-κB and AP-1 activation 

upon CpG-stimulation. 
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Fig 1. Cell viability in CpG-stimulated bone marrow-derived dendritic cells 

BMDCs were treated with UFE extract for the indicated doses. SB203580 (SB) was used as 

positive control. Results shown are the mean±SD of an experiment done in triplicate and are 

representative of 3 independent experiments; ND, not detected; *p<0.05, **p<0.01 vs. UFE-

untreated cells in the presence of CpG 

 

 

  

0 

20 

40 

60 

80 

100 

120 

V
ia

b
il
it

y
 (

%
) 



 

- 12 - 

 

 

 

 

 

Fig 2. Inhibitory effects of UFE on IL-12 p40 productions in CpG-stimulated bone 

marrow-derived dendritic cells 

BMDCs were treated with UFE extract for the indicated doses and cytokine level was 

assessed by ELISA. SB203580 (SB) was used as positive control. Results shown are the 

mean±SD of an experiment done in triplicate and are representative of 3 independent 

experiments; ND, not detected; *p<0.05, **p<0.01 vs. UFE-untreated cells in the presence 

of CpG 
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Fig 3. Inhibitory effects of UFE on IL-6 productions in CpG-stimulated bone marrow-

derived dendritic cells  

BMDCs were treated with UFE extract for the indicated doses and cytokine level was 

assessed by ELISA. SB203580 (SB) was used as positive control. Results shown are the 

mean±SD of an experiment done in triplicate and are representative of 3 independent 

experiments; ND, not detected; *p<0.05, **p<0.01 vs. UFE-untreated cells in the presence 

of CpG 

 

 

 

 

0 

2 

4 

6 

IL
-6

 (
n

g
/m

l)
 



 

- 14 - 

 

 

 

 

Fig 4. Inhibitory effects of UFE on TNF-α productions in CpG-stimulated bone 

marrow-derived dendritic cells  

BMDCs were treated with UFE extract for the indicated doses and cytokine level was 

assessed by ELISA. SB203580 (SB) was used as positive control. Results shown are the 

mean±SD of an experiment done in triplicate and are representative of 3 independent 

experiments; ND, not detected; *p<0.05, **p<0.01 vs. UFE-untreated cells in the presence 

of CpG 
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Fig 5. Cell viability in CpG-stimulated bone marrow-derived macrophages  

BMDMs were treated with UFE extract for the indicated. SB203580 (SB) was used as 

positive control. Results shown are the mean±SD of an experiment done in triplicate and are 

representative of 3 independent experiments; ND, not detected; *p<0.05, **p<0.01 vs. UFE-

untreated cells in the presence of CpG 
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Fig 6. Inhibitory effects of UFE on IL-12 p40 productions in CpG-stimulated bone 

marrow-derived macrophages  

BMDMs were treated with UFE extract for the indicated doses and cytokine level was 

assessed by ELISA. SB203580 (SB) was used as positive control. Results shown are the 

mean±SD of an experiment done in triplicate and are representative of 3 independent 

experiments; ND, not detected; *p<0.05, **p<0.01 vs. UFE-untreated cells in the presence 

of CpG 

 

 

  

0 

10 

20 

30 

40 

IL
-1

2
p

4
0
 (

n
g

/m
l)

 



 

- 17 - 

 

 

  

 

 

Fig 7. Inhibitory effects of UFE on IL-6 productions in CpG-stimulated bone marrow-

derived macrophages  

BMDMs were treated with UFE extract for the indicated doses and cytokine level was 

assessed by ELISA. SB203580 (SB) was used as positive control. Results shown are the 

mean±SD of an experiment done in triplicate and are representative of 3 independent 

experiments; ND, not detected; *p<0.05, **p<0.01 vs. UFE-untreated cells in the presence 

of CpG 
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Fig 8. Inhibitory effects of UFE on TNF-α productions in CpG-stimulated bone 

marrow-derived macrophages  

BMDMs were treated with UFE extract for the indicated doses and cytokine level was 

assessed by ELISA. SB203580 (SB) was used as positive control. Results shown are the 

mean±SD of an experiment done in triplicate and are representative of 3 independent 

experiments; ND, not detected; *p<0.05, **p<0.01 vs. UFE-untreated cells in the presence 

of CpG 
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Fig 9. Effect of UFE on MAPK phosphorylation by CpG-stimulated bone marrow-

derived macrophages  

Results shown are the representative of independent experiments in Phosphorylation of ERK, 

JNK, and p38 protein expression (A) was quantified using scanning densitometry and the 

band intensities were normalized by that of total p38 protein (B). ND, not detected; *p<0.05 

vs. CpG- treated group  
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Fig 10. Effect of UFE on degradation of IκBα by CpG-stimulated bone marrow-derived 

macrophages  

Results shown are the representative of independent experiments in IκBα protein expression 

(A) was quantified using scanning densitometry and the band intensities were normalized by 

that of total p38 protein (B). ND, not detected; *p<0.05 vs. CpG- treated group  
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Fig 11. Effect of Ulva fasciata extract on NF-κB reporter activity in HEK293T cells  

UFE treatment inhibited NF-κB reporter activity in HEK293T cells. HEK293T cells were 

transfected and then treated with UFE at the indicated doses. Cell lysates were prepared and 

assayed for firefly luciferase vs. renilla activities, and results were expressed as relative 

luciferase. *p<0.05 vs. UFE-untreated cells in the presence of CpG 
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Fig 12. Effect of Ulva fasciata extract on AP-1 reporter activity in HEK293T cells 

UFE treatment inhibited AP-1 reporter activity in HEK293T cells. HEK293T cells were 

transfected and then treated with UFE at the indicated doses. Cell lysates were prepared and 

assayed for firefly luciferase vs. renilla activities, and results were expressed as relative 

luciferase. *p<0.05 vs. UFE-untreated cells in the presence of CpG 

  



 

- 23 - 

 

4. Discussion 

 

This report was designed to study inhibitory effect of sea lettuce (Ulva fasciata) 

extract (UFE) on pro-inflammatory cytokine production in bone marrow-derived 

macrophages and dendritic cells. The UFE (0-50 μg/mL) pre-treatment showed a dose 

dependant inhibitory effect on IL-12 p40, IL-6, and TNF-α productions in CpG-stimulated 

BMDMs and BMDCs as compared to non-treated controls. 

Macrophages and dendritic cells have a major role in productions of key pro-

inflammatory cytokines (7). Macrophages and dendritic cells are major part of mammalian 

immune system and play important role in productions of pro-inflammatory cytokines (6). 

IL-12 is a key cytokine in Th1-mediated autoimmune responses, so down regulation of IL-12 

production by the UFE may be helpful in combating IL-12-associated autoimmune diseases 

(21). Controlled TNF-α has critical immunoregulatory roles while its overproduction is 

injurious as it results in inflammatory diseases such as rheumatoid arthritis and Crohn’s 

disease (22). In the present study, pre-treatment of UFE exhibited a strong dose-dependent 

inhibition of TNF-α production in CpG-stimulated BMDMs, so it may hold therapeutic 

potential for combating TNF-α associated diseases. IL-12 p40 and TNF-α production in 

CpG-stimulated BMDMs and BMDCs showed dose dependant inhibition while IL-6 does 

not show a dose-dependent inhibition. This apparent discrepancy between cytokines may be 

due to differences of the regulatory factors associated with the upstream promoters of 

corresponding pro-inflammatory cytokines. 

This study indicates that treatment of UFE resulted in strong inhibition on productions 

of pro-inflammatory cytokines such as IL-12 p40 and TNF-α. However, unexpectedly we 

observed partial inhibitory effect of UFE treatment on TLR9-dependant NF-κB and AP-1 

activity even though it showed strong inhibition on phosphorylation of p38 MAPK. There 

are two possible explanations of this apparent disparity. First, the p38 pathway is involved in 
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transcriptional control of pro-inflammatory cytokines (23). The p38 MAPK phosphorylate 

different transcriptional factors including AP-1, ATF-2, MEF2A, Elk-1, and Ets-1 (24). The 

strong expression of IL-12 p40 and TNF-α genes could be due to cooperative effect of these 

multiple transcriptional factors regulated by p38 MAPK. Second, the p38 MAPK has been 

reported to regulate the pro-inflammatory cytokine production at the post-transcriptional 

level by stabilizing the cytokine mRNAs containing common AU-rich elements (23, 25). 

Hence, blockage of p38 MAPK strongly inhibits productions of IL-12 p40, IL-6, and TNF-α.  

The present study suggests that UFE has an inhibitory effect on productions of pro-

inflammatory cytokines, TLR9-dependent NF-κB and AP-1 activation and thus warrant 

further studies concerning potential uses of UFE for medicinal food. Further studies are 

required regarding in-depth investigation and detail mode of actions of the pure biologically 

active compounds from the U. fasciata. 
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