

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

A Thesis

For the Degree of Master of Science

IoT Cooperation Architecture based on OCF IoTivity and

CoAP Protocol

Lei Hang

Department of Computer Engineering

Graduate School

Jeju National University

June 2017

Dedicated to my families for being a constant source

of support and encouragement!

Acknowledgment

First of all, I would like to express my gratitude to all those who helped me during the writing

of this thesis. I gratefully acknowledge the help of my supervisor, Prof. Do-Hyeun Kim, who has

offered me valuable suggestions in the academic studies. In the preparation of this thesis， he has

spent much time reading through each draft and provided me with inspiring advice. Without his

patient instruction, insightful criticism and expert guidance, the completion of this thesis would

not have been possible.

Second, I would like to thank my thesis evaluation committee for their insightful comments

and valuable suggestions during the thesis defense. Their input helped me in elevating the quality

of this thesis.

Last, I really appreciate the support and encouragement given to my current lab mates

Wenquan Jin, Songai Xuan, Israr Ullah and Muhammad Fayaz for their kind support and help

during this endeavor.

To all of you, a heartfelt thanks for everything you did!

 Lei Hang

i

Table of Contents

Abstract .. 1

1. Introduction ... 3

2. Related Work... 8

2.1 IoT Composition Platform ... 8

2.2 IoT Standards .. 13

2.3 IoT Open Source Hardware ... 17

2.4 IoT Protocol ... 20

2.5 Open Source Machine Learning Software .. 23

3. Proposed IoT Cooperation Architecture and Composition System 26

3.1 Physical Cooperation Network Layer ... 30

3.2 Virtual Object Layer ... 34

3.3 Service Logic Layer ... 36

3.4 Business Process Layer ... 40

3.5 Application Layer.. 46

3.6 PMV (Predicted Mean Vote) .. 48

3.7 PMV Prediction based on Linear Regression Algorithm .. 51

3.8 Fan Control based on Fuzzy Logic with PMV.. 54

4. Implementation ... 59

4.1 Virtual Device Manager ... 59

ii

4.2 Service Composition Manager ... 65

4.3 BPM Editor .. 70

4.4 IoT Smart Space Prototype .. 76

4.5 PMV Calculation ... 84

4.6 PMV Prediction based on Linear Regression ... 85

4.7 Control based on Fuzzy Logic with PMV ... 88

5. Experiment and Evaluation ... 92

6. Conclusion.. 101

References .. 102

iii

List of Figures

Figure 1: Comparison of the existing and proposed IoT cooperation system architecture .. 6

Figure 2: Generic architecture of the Glue.Things project .. 9

Figure 3: Conceptual architecture of IoT MAP .. 10

Figure 4: High-level architecture of the IoTLink .. 11

Figure 5: Layered architecture of the SSC Platform .. 11

Figure 6: OCF IoTivity architecture .. 14

Figure 7: oneM2M reference architecture ... 16

Figure 8: Arduino UNO ... 18

Figure 9: IoT cooperation network conceptual ... 26

Figure 10: Connection between Virtual Domain and Physical Domain................................ 27

Figure 11: Sequence of the IoT Architecture based on IoT Proxy .. 29

Figure 12: Proposed IoT Composition Architecture .. 30

Figure 13: TinkerKit Thermistor Module ... 31

Figure 14: Humidity Sensor HIH-4030 .. 32

Figure 15: Wind Speed Sensor (SKU:SEN0170) ... 33

Figure 16: Arduino L9110 Fan Module ... 33

Figure 17: Physical IoT Cooperation Network Structure .. 34

Figure 18: Virtual Device Manager Operation Configuration .. 36

Figure 19: Service Composition Manager Operation Configuration 38

Figure 20: BPM Editor Operational Configuration ... 41

Figure 21: BPM Deployment Engine Operation Configuration .. 42

Figure 22: IoT Application Development Procedure in terms of the BPL Perspective 44

Figure 23: IoT Application Prototype Conceptual ... 46

iv

Figure 24: Design of the IoT Application Prototype ... 47

Figure 25: Fuzzy Sets for the Input Variable PMV .. 54

Figure 26: Fuzzy Sets for the Input Variable ∆PMV .. 54

Figure 27: Fuzzy Sets for the Output Variable Fan Speed .. 55

Figure 28: Fuzzy Controller Block Diagram ... 57

Figure 29: IoT Smart Space Implementation in the Proposed Architecture 60

Figure 30: Virtual Device Manager Main Interface ... 61

Figure 31: Device Interface for Creating Virtual Objects .. 62

Figure 32: XML Representation of Created Virtual Devices .. 64

Figure 33: Service Composition Manager Interface ... 66

Figure 34: Service Object Process in Service Composition Manager 67

Figure 35: XML Representation of Service Objects ... 69

Figure 36: BPM Editor Interface ... 70

Figure 37: Loading Service Objects at BPM Editor ... 71

Figure 38: Generated BPMN in BPM Editor .. 72

Figure 39: Temperature Sensor XML Representation of BPMN .. 73

Figure 40: PMV Index XML Representation of BPMN ... 73

Figure 41: LR Predictor XML Representation of BPMN .. 74

Figure 42: Fuzzy Controller XML Representation of BPMN .. 74

Figure 43: Temperature Sensor XML Representation of BPMN .. 74

Figure 44: IoT Smart Space Application Prototype Structure .. 77

Figure 45: Implement Environment of Temperature Sensor .. 78

Figure 46: Implement Environment of Wind Speed Sensor .. 79

Figure 47: Implement Environment of Humidity Sensor... 79

Figure 48: Implement Environment of Fan Actuator .. 80

v

Figure 49: Implement Environment of IoT Proxy .. 81

Figure 50: PMV Equation Parameter Definition .. 82

Figure 51: PMV Equation Implementation ... 83

Figure 52: PMV Execution Result .. 84

Figure 53: Snapshot of Training Dataset for PMV Index Prediction 86

Figure 54: Snapshot of Source Code for PMV Index Prediction Process using Weka 87

Figure 55: PMV Index Prediction Eecution Result... 87

Figure 56: Fuzzy Controller Variable Definitions .. 88

Figure 57: PMV Index Prediction Execution Result... 89

Figure 58: Fuzzy Controller Fuzzy Rule Block ... 90

Figure 59: Experiment Scenario of the Smart Indoor Space Prototype 91

Figure 60: Intel Edison based Finalized Smart Indoor Space Prototype for Experiment .. 92

Figure 61: BPM Execution Result in IoT Proxy ... 93

Figure 62: Sensing Response Information in IoT Proxy .. 94

Figure 63: Built Linear Regression Model for PMV Index Prediction in IoT Proxy 95

Figure 64: Launch Fuzzy Inference System in IoT Proxy .. 96

Figure 65: Fuzzy Inference System Output in IoT Proxy .. 96

Figure 66: Smart Indoor Space Prototype Evaluation Structure .. 98

Figure 67: Smart Indoor Space Prototype Round Trip Time .. 99

vi

List of Tables

Table 1: Predicted Mean Vote Sensation Scale ... 48

Table 2: Nomenclature, description and measure units of the variables Involved in the PMV

equation ... 49

Table 3: Considered fuzzy sets for input and output variables ... 56

Table 4: Sample of the fuzzy rules used ... 58

Table 5: Device Implementation Summary for Smart Indoor Space 63

Table 6: Logic Objects Implementation Summary ... 68

Table 7: Development Environment for IoT Smart Space Prototype 76

Table 8: Smart indoor space prototype performance ... 97

vii

Abbreviations

API Application Programming Interface

ARFF Attribute Relation File Format

BPL Business Process Layer

BPM Business Process Modeling

BPMN Business Process Modeling Notations

CoAP Constrained Application Protocol

DIY Do-It-Yourself

FIS Fuzzy Inference System

HTTP Hyper-Text Transfer Protocol

HVAC Heating, Ventilation and Air Conditioning

IoT Internet of Things

JSON JavaScript Object Notation

LO Logic Object

MQTT MQ Telemetry Transport

POJO Plain Old Java Object

REST Representational State Transfer

VONL Virtual Object Network Layer

SLL Service Logic Layer

viii

SCM Service Composition Manager

SO Service Object

SOA Service Oriented Architecture

URI Uniform Resource Identifier

VO Virtual Object

VONL Virtual Object Network Layer

VOM Virtual Object Manager

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

1

Abstract

In generally, Internet of Things refers to the networked interconnection of everyday objects,

which are often equipped with ubiquitous intelligence. IoT will increase the ubiquity of the

Internet by integrating every object for interaction via embedded systems, which leads to a highly

distributed network of devices communicating with human beings as well as other devices. In

recent years, IoT has gained much attention from researchers and practitioners from around the

world. The Internet of Things (IoT) application development is a complex task that requires a wide

range of expertise. Currently, the IoT development toolkit lacks support for inexperienced

developers to develop IoT prototypes rapidly. Also, these systems do not consider the intelligent

logic and business process. Filling this gap, a novel IoT cooperation architecture based on

Business Process Modeling paradigm has been presented in this paper. The proposed IoT

cooperation architecture comprises of physical cooperation network layer based on IoTivity and

CoAP protocol, virtual object layer for virtualization of physical IoT devices, service logic layer

for connectivity and intelligence of things, business process layer for developing process of IoT

application and application layer for IoT application conceptual design. We also propose the logic

object contains machine learning algorithm based elements for smart application in service logical

layer. This study utilizes the existing concepts of virtual objects and service-orientation to enable

end-users to configure and wire IoT service objects together to create an IoT application via simple

actions like drag-n-drop and clicks etc. Through visual components, proposed system encapsulates

the complexity of communicating with devices and services on the internet and abstracts them as

virtual objects that are accessible through different communication technologies. In order to prove

the feasibility of the proposed system, a smart indoor space prototype has been implemented for

this purpose. First, we create virtual objects of physical temperature node, humidity node, wind

speed node, fan node, and proxy node. Then we combine the virtual objects to generate service

objects. We also implement PMV index calculation, linear regression prediction and fuzzy logic

2

based control module through which the users are able to combine with the virtual objects to

configure complex service process for indoor environment automatic control. It allows

participants to use the proposed architecture for service composition and BPM based process

development for the smart space prototype. Well-established open IoT technologies such as OCF

IoTivity and CoAP protocol have been utilized in the proposed prototype application. The

prototype has been experimentally tested in an indoor working place and the experiment results

illustrate the feasibility and performance of the proposed IoT architecture.

3

1. Introduction

The Internet of things (IoT) is becoming an increasingly growing topic of conversation both

in the workplace and outside of it [1]. IoT promises to enable building novel applications in areas

such as building and home automation, smart environment, agriculture, intelligent transportation,

and healthcare [2]. IoT is the basic concept of basically enabling a global connectivity of any

devices with an on and off switch to the Internet between the real world and a virtual world. Such

moving devices sense their environment and interact with their surroundings to take/give actuation

orders. An increasing number of applications rely on such devices to offer people digital aids for

their everyday activities. In this continuously evolving IoT landscape, recent studies show that the

number of connected smart objects will radically increase in the next years [3].

With this blooming of smart devices, the challenge arises, how to put devices together to make

IoT applications? This challenging issue manifests that many IoT infrastructures are built with a

lack of interoperability in system integration such as data transmission, device management, and

service composition and application deployment [4]. With the rapid increment in the dynamic IoT

market, it is inefficient and time-consuming for developers to meet all these requirements as new

products and techniques are arising all the time [5]. The number of communication protocols and

IoT technologies are steadily increasing, and more and more APIs and data models are released

for a specific domain and product. IoT mashup is a new solution for easing the development of

IoT applications using familiar web development tools and technologies. Recently, the

Representational State Transfer (REST) architecture has appeared, leading the development of

Web of Things [7]. Things are identified by URIs and use a common protocol (HTTP) for stateless

interaction between clients and servers. Using web protocols makes the creation of mashups

possible allowing developers to combine data from both physical data sources and virtual sources

on the web [8-9]. Various high-end loT or M2M platforms and toolkits have been developed,

4

platform such as GeoThings [10] and Fitbit [11] providing Application Programming Interfaces

(APIs) based on Representation State Transfer (REST) for easy device and app integration.

openHAB [12] is an open source platform designed for smart home environment which provides

Integrated Development Environments (IDEs), proprietary APIs, Software Development Kits

(SDKs) and script engines. However, with the development of web front-end technologies such

as JavaScripts and HTML5, these IoT platforms moving in a Web-centric direction with REST

APIs and Web-based dashboards helping users to quickly set up and monitor the platform. In

contrast, WoTKit [13] allows users to quickly find and subscribe to sensor data of interest, process

data and visualize the data using widgets on a dashboard. Platforms such as Kaa [14], Predix [15]

or Carriots [16] providing dashboards for data management of connected objects, SDKs for

integration between device and server, web-based APIs for integration with product-specific

services. However, the point is that all these solutions are perfectly valid for their specific

application domains but limit to user customized domains. These platforms provide their own

programming environment therefore users must be able to know programming languages such as

Java or C to construct their applications. In this paper, we propose an enhanced IoT mashup

platform for users who have no programming experience to design and develop their own IoT

prototypes.

Our vision is to let the user model the process based on the available atomic services which

have some level of composition and then integrate them with user defined rules to model their

processes and directly execute those processes. Sometimes, these sample services can’t satisfy the

users’ requirement such as in smart home environment since the cooperation between devices are

required. To satisfy this requirement, machine learning algorithm approaches are implemented to

integrate the logic process between multiple devices. Such an approach can enable the users to

easily model and execute their desired processes and hence make IoT applications agile with

respect to the user requirements. This work proposes the use of standardized Business Process

5

Modeling Notations (BPMN) based enhanced IoT architecture [17]. The proposed architecture is

aimed at reducing the development difficulty and enable ordinary users to intuitively utilize virtual

representations of IoT devices to compose services and to visualize those services as business

process modeling notations to graphically model their own IoT applications or customize the

existing ones according to their needs and requirements. This concept proves even more important

in the case of IoT application development because the number of IoT enabling technologies is

very high and it is still growing with time. In such a scenario if mass involvement of general

population with lesser or no technical/programming skills is required, the DIY concept must be

implemented in its entirety [18].

Figure 1 presents a generic comparison between the existing architectures which claims to

provide a mashup approach for easing the development of IoT applications and the proposed IoT

Architecture based on enhanced Business Process Modeling Approach. The first two layers of

both the architectures have the same goals of representing the physical devices as virtual objects.

In different systems, these virtual objects may be represented using different encoding

technologies but nevertheless, the main objective of the virtual objects remains the same. Hence,

the general functionality of the first two layers in the existing and the proposed architecture is

same.

The third layer represents the Service Layer where the virtual objects are utilized to create

service objects. The main aim of this layer in the existing and the proposed architecture is similar

and that is to provide an intuitive approach to enable the users to create the services of their own

choice and according to their own requirements. Small services are combined together to a large

service, this process is called service composition. Simple logic is implemented through point-to-

point exchanges or primitive compositions in service-oriented solutions. But the proposed system

provides logic objects to define more complex variations between objects. Machine Learning

algorithms based approaches are encapsulated as logic objects that define adaptive operations

6

between multiple objects. The existing systems mostly expose these user-created services as

Application Programming Interfaces (APIs) and let the users create their own client applications

by utilizing these exposed APIs. This allows for the creation of more requirement specific

applications but it violates the basic concept of DIY development paradigm. The client application

development with application logic at the client side is again a developer’s job and people with no

programming skills may not be able to create their own custom applications. At the end such

application development is time consuming and the resulting applications cannot be modified

easily.

Physical Objects Physical Objects

Virtual Objects Virtual Objects

Service Objects Service Objects Logic Objects

Business Process Modeling

BPMN based Drag-n-Drop interface for
composing IoT application

Client application required to utilize
Service API

Service API

Existing Architecture
(Generic View)

Proposed Architecture
(Generic View)

Business
Layer

Service Layer

Virtual
Object Layer

Physical
Layer

Application
Layer

Logic

BPM

Application
Logic??

Programming
Skills??

Static AppsTime
Consuming

DIY No Coding

Inituitive
Extendable

Apps

Figure 1: Comparison of the existing and proposed IoT cooperation system architecture

7

The proposed IoT composition architecture enhances the existing architecture by providing a

Business Process Modeling approach for an IoT application development platform and supporting

logic objects for defining complex composed service objects. The service objects created at the

Service Layer are represented as standardized Business Process Modeling Notation (BPMN) along

with notations to help create the application logic in an intuitive visual manner. The simple action

such as Drag-n-Drop, mouse clicks etc. are well known to general population of modern age, hence

enabling anyone to create their own IoT applications. No coding is required on behalf of the

application developer (end-user) and the created applications can be easily modified through the

manipulation of the business process model representing the application.

The next chapter of the dissertation provides a thorough analysis of the related projects and

the existing IoT techniques (software, hardware, protocol etc.). Chapter 3 provides the details of

the proposed architecture by explaining the major component and functionalities at each layer.

Chapter 4 provides some insight into the implementation of the proposed system. In order to

evaluate the utilization of the proposed architecture in different IoT scenarios, one use-case have

been developed from the fields of smart spaces. Prototype implementations have been developed

in order to evaluate the performance of the proposed architecture in this use case from the

perspective of its usability.

8

2. Related Work

The next wave in the era of computing will be outside the realm of the traditional desktop. In

the Internet of Things (IoT) paradigm, many of the objects that surround us will be on the network

in one form or another. The IoT vision is the realization of a worldwide network of connected and

interoperable smart devices which can provide services to the people. Although the individual

technologies in terms of communication and devices have improved tremendously, the

implementation and realization of such a complex network is still in its nascent stage. The end

goal is to have plug-n-play smart objects that can be deployed in any environment with an

interoperable interconnection backbone that allows them to blend with other smart objects around

them. Standardization of frequency bands and protocols plays a pivotal role in accomplishing this

goal. To provide a high-quality user experience, we need to find ways to overcome the hurdles

which includes the coping with the heterogeneity of the hardware and mass involvement of general

public in the IoT development and adaptation process. The first issue is being abstracted out with

the help of middleware based solution and service-orientation. The second issue is of greater

importance because in our view, the realization of a successful worldwide IoT implementation is

not possible without the involvement of masses in the development of IoT.

2.1. Existing IoT Composition Platform

Here we discuss some of the recent IoT related projects which, in some way, provide a unique

and alternate interface for end users to get involved in the design and development of IoT in our

daily life.

Glue.things [19], is a recent project which implements the concepts of device integration and

real-time communication using the recent technologies of Web Sockets, MQTT and CoAP. The

protocols are utilized on real-time data streams networks to allow mashups of the data streams,

9

add actions etc. The final mashups are deployable in a distributed environment. The system

specially focuses on the composition of data streams from Web services and IoT devices with Web

interfaces. The main aim of Glue.things as shown by the architecture in Figure is to utilize web

technologies for providing interoperability platform with REST APIs, JSON data models and Web

sockets etc. The Mashup interface is based on Node-RED [20] which is a browser based visual

data stream aggregation tool. Another important aspect of the project is the utilization of well-

established Open Source technologies.

Figure 2: Generic architecture of the Glue.Things project

IoT Mashup Application Platform (MAP) [21] is an effort towards flexible interoperability

of smart things with smart phones in users’ personal pervasive environments. IoT Map decouples

the development of mobile application from the static model chosen by the designer/developer of

the application which is a great hurdle in the way of application adaptability to the user’s needs

and/or the surrounding environment. IoT MAP utilizes the concept of abstracted service objects

for the development of IoT applications. This is achieved through a set of application

programming interfaces (API) exposed for functions like discovery and retrieval of the service

objects etc. The business logic is written in POJO [22] while abstracting out the details of

10

connectivity and implementation of smart things. As shown in the conceptual architecture

presented in Figure , the users can also utilize a graphical authoring tool based on NodeRed to

compose an IoT application which can be converted into API calls and executed as an application.

Figure 3: Conceptual architecture of IoT MAP

From the perspective of reducing the complexity of IoT application development, IoTLink

[23] has been presented as a development toolkit. The IoTLink toolkit is based on a model driven

approach, which utilizes a domain-specific graphical programming language to allow

inexperienced developers to compose their own IoT applications. It encapsulates the underlying

complexities of interaction with IoT devices and services into visual components. These visual

components represent the IoT devices as virtual objects which can be accessed through multiple

communication technologies. The high level architecture of the IoTLink project is shown in

Figure . The project utilized IBM post-study system usability questionnaire to get user feedback

regarding the system usability.

11

Figure 4: High-level architecture of the IoTLink

Figure 5: Layered architecture of the SSC platform

Super Stream Collider (SSC) [24] as shown in Figure is another platform which helps enable

everyone, from novice IoT users to expert programmers, to develop IoT applications in the form

of near-real-time data streams. The web-based interface for SSC enables anyone to create their

own mashups by combining linked data sources and linked streams to create resources which can

be used as applications for IoT scenarios. The system supports drag-n-drop technique with a

12

SPARQL/CQELS editor. As the platform is intended for large data acquisitions through streams,

it utilizes cloud infrastructure for fetching the data, processing and dissemination of data.

As part of the OpenIoT project, a visual development approach has been presented by

Kefalakis et al. [26]. The visual development tools are intended to be used as an integrated

development environment (IDE) for the support of IoT application development lifecycle. The

tools presented are based on a semantic IoT architecture and claims to be a minimal programming

environment for IoT application development. It uses a node-based user interface theme to allow

the user to model service graphs and then convert them into SPARQL queries.

A multi-layer architecture framework has been proposed in [27]. The IoT architectural

framework with configurable nodes and multiple sensors could be utilized in diverse applications.

The sensor nodes collect data from the surrounding environment and pass it to the cloud for

universal accessibility by the users. The proposed framework can be used for diverse applications

and has been verified through hardware implementation for applications such as healthcare,

wearables, structural health monitoring, object tracking, and connected vehicles.

The OPEL software platform [28] is designed considering the following requirements. First,

the IoT platform should be programmable with an easy programming language. In particular, the

programming language should have high productivity, portability, and extendibility to enlarge the

IoT ecosystem. A good candidate is JavaScript (JS) language. Second, the platform should provide

high-level APls for easy application development. The APIs need to provide several functions

including sensor and device management, communication, etc. Third, the platform should support

multiple IoT applications. User should be able to install multiple applications with different

functions, which can be executed concurrently. Then, user can exploit multiple services on single

device. Lastly, the software platform should enable the companion IoT device to communicate

with its host device (e.g. Android smartphone), and to be controllable via its host device.

13

2.2. Existing IoT Open Source Framework

This section provides an overview of the common IoT open source frameworks. Here we discuss

some of the widely used and popular frameworks for the Internet of Things.

IoTivity [29] is an open source software framework enabling seamless device-to-device

connectivity to address the emerging needs of the Internet of Things. The IoTivity is sponsored

by the OCF (Open Connectivity Foundation) who is developing a standard specification and

certification program to enable the Internet of Things. This open specification is determined to

unlock the massive opportunity in the IoT market, accelerate industry innovation and help

developers and companies create solutions. The goal of IoTivity is to develop an open source

software framework that can seamlessly connect billions of devices to the future of the Internet

world, regardless of operating system and network protocols. One of the most important parts for

activating the Internet ecosystem is how can small and medium-sized companies manufacturing

various things add an Internet connection function to their products and provide an environment

that can easily provide them with smartphone apps or services. IoTivity is a framework for

satisfying these requirements, ensuring interoperability between high-quality Internet devices and

developing high-speed internet products. It is also expanding the range of open source hardware

(e.g. Raspberry Pie, Edison) and software platforms (e.g. Android, iOS, Windows, Linux, etc.)

Currently, IoTivity supports Ubuntu, Tizen and Android, and iOS will be supported in the future.

The open source hardware platform now supports Arduino and Edison, and will continue to

expand its supported hardware platforms. Basically, IoTivity is an open source technology for

Internet middleware based on OIC standards.

14

Figure 6. OCF IoTivity architecture

Figure 6 shows the conceptual architecture of IoTivity that consists of three layers. Transports

layer supports the existing protocols such as Bluetooth, Wi-Fi, Zigbee, etc. Profile layer stands for

each vertical field of object Internet applications such as smart home, smart factory, eHealth, etc.

A framework layer supports functions such as resource discovery, data transfer, device

management, and data management. In the case of the transport layer, new technologies can be

continuously extended, and even with these extensions, the application layer of the profile layer

can be executed without modification, with the support of the framework layer. For reference, the

license policy follows Apache 2.0 and is operated by the Linux Foundation. IoTivity is based on

a resource-based RESTful architecture model, thus representing all things as resources and

providing CRUDN (Create, Read, Update, Delete and Notify) operations. In addition, it is

designed based on CoAP (Constrained Application Protocol) without a daemon, so it is easy to

support low-end and low-power devices.

A standard of M2M [30] is published by the oneM2M Global initiative which includes

functional architecture, security solutions, protocol binding, ontology, etc. The documents that the

initiative have published also involves solutions of interworking with other frameworks or

platforms. oneM2M was initiated by seven telecom standards defining organizations: the

Telecommunications Technology Association (TTA) in Korea, Association of Radio Industries

15

and Businesses (ARIB) and Telecommunication Technology Committee (TTC) in Japan, the

Alliance for Telecommunications Industry Solutions (ATIS) and Telecommunications Industry

Association (TIA) in United States, the China Communications Standards Association (CCSA) in

China and the European Telecommunications Standards Institute (ETSI) in Europe [31]. Currently

there are 238 participating partners and members, actively contribute to oneM2M. In addition,

various alliances and industry fora such as the Open Mobile Alliance (OMA), Broadband Forum

(BBF), Continua Health Alliance, and the Home Gateway Initiative (HGI) have recently become

oneM2M partners. oneM2M defines three reference points [32] (i.e., Mca, Mcc, and Mcc’) for

communication between oneM2M entities as indicated in Figure 7. For example, the Mca

reference point enables the communication between AEs and CSEs; Mcc is responsible for

communication between CSEs in the same M2M service provider domain; Mcc’ provides similar

functions to Mcc but the communication is taken over different M2M service provider domains.

In oneM2M, Mcc’ plays an important role to provide an extension of service reachability from

one service provider domain to multiple service provider domains. The Mca reference point needs

to follow the oneM2M interoperability between AE and CSE to enable interworking between

applications and a device/gateway/server. In the case of interworking between device and gateway

or between gateway and server, the Mcc reference point should be oneM2M interoperable. The

Mcc’ processes communication between IN-CSEs in both M2M service provider domains for

service provider communication in the same domain. Integrating multi-vendor solutions in the

domain of IoT is common, essential, and complicated. This standards based interworking

architecture can serve to reduce interworking complexity.

The open Home Automation Bus (openHUB) [33] is an open source framework aims to help

implementing smart home application. openHUB is a software providing a single solution which

allows over-arching automation and offers uniform user interfaces for integrating different home

automation systems and technologies. It is a pure Java-based framework which can run on any

16

device capable of running a JVM. The modular stack abstracts all IoT technologies and

components into “items,” and offers rules, scripts, and support for persistence -- the ability to store

device states over time. OpenHAB offers a variety of web-based UIs, and is supported by major

Linux hacker boards. The openHUB also provides user interfaces for mobile devices running

Android or iOS system.

Gateway

APP

MN-CSE

Mca

Server

APP

IN-CSE

Mca

Server

APP

IN-CSE

Mca

Mcc Mcc’

M2M Service Provider (SP) M2M Service Provider (SP)

APP

Mca

Figure 7. oneM2M reference architecture

The OpenIoT [34] is another Java-based open source platform for IoT, which aims to facilitate

open, large-scale IoT applications using a utility cloud computing delivery model. The platform

includes sensor and sensor network middleware, as well as ontologies, semantic models, and

annotations for representing IoT objects. The OpenIoT is a unique open source platform for

developing and integrating IoT applications. It supports the integration and use of both physical

sensors and virtual sensors. OpenIoT blends IoT with semantic technologies by providing the

means to use semantically rich descriptions about sensor data and metadata which complies the

W3C SSN ontology. Furthermore, OpenIoT supports integration of data streams within both IoT

17

and cloud infrastructures [35]. It is built on open source technologies such as GSN (Global Sensor

Networks), through which users can gain access to these technologies. OpenIoT extends the cloud

computing implementations, which provides the approaches to formulate and manage increasingly

important IoT based resources and capabilities which can deliver on-demand utility IoT services

such as sensing as a service.

2.3. Existing IoT Open Source Hardware

Open source hardware consists of physical artifacts of technology designed and offered by the

open-source culture movement. Open sources means the information about the hardware is easily

discerned, so that anyone can learn, modify, distribute and manufacture. Open source hardware is

usually made with components and materials that are easily available to each individual, standard

processing methods, open facilities, unrestricted content, and open source design tools. This

section introduces some of the recent and widely used IoT open source hardwares.

Arduino [36] is a tool developed by interaction designers Massimo Banzid and Davide

Cuatielles for the purpose of pursuing an interactive design experience in an inexpensive way. As

an open source computing platform based on a simple microcontroller board, it provides a

development environment for interactive object software that receives inputs from various sensors

and controls various outputs including motors, lights, etc. Features of Arduino include low cost,

easy accessibility and infinite scalability. It can be purchased for as low as $ 35 compared to other

microcontroller platforms. While most microcontroller systems have limitations in the operating

systems available, it can run on Microsoft Windows, Macintosh OSX, and Linux. It also provides

a simple and easy programming environment, making it easy for non-technicians like designers to

program. In terms of hardware, the module design is distributed under the Creative Commons

License (CCL), allowing experienced circuit designers to create, extend, enhance and distribute

their own module versions. Even if the circuit design is immature, it is possible to model the

18

prototype version with Arduino to reduce the operating method and cost. Arduino has a basic

board type USB, Mega, Fio, LilyPad, Nano, Mini and a shield line which is based on this board

and which is mounted on the existing Arduino board to expand its functions. Arduino boards are

generally used for UNO and YUN, and TRE is in preparation for release. Figure 8 shows a

representative UNO board as a business card size board. YUN is a Leonardo version that adds

WiFi as a System on Chip (SoC) and has the same specifications as Leonardo.

Figure 8. Arduino UNO

Tre is a 1 GHz Sitara AM335x processor with 100 times the performance of Leonardo or UNO.

For example, the development of the Arduino UNO requires the Arduino board and the "A plug

to B plug standard USB (Universal Serial Bus) cable". The development tool provides the Arduino

IDE (Integrated Development Environment) in arduino.cc. Since the power is supplied via USB

cable, there is no need for separate power supply. PWR Power of board) It is possible to confirm

power supply by lighting on LED (Light Emitting Diode). Install the ADOINO UNO driver,

enable the COM port, and launch the ADOINO application. Software written using Arduino is

called sketches and is stored with an .ino extension. In the Arduino application, select the board

you want to use in the Tools> Board menu, in this case "Arduino UNO" and the COM serial port

set above. Finally, the software is transferred to the board through the upload button of the

application.

19

Raspberry Pi [37] is headquartered in the UK. Educational charity in computer and related

disciplines focused on the introduction of low-cost computers for education that span both adults

and children. Raspberry Pie is a credit card sized computer with a simplified circuit using the

BCM2835 chip, which can be used as a PC by connecting a monitor and keyboard mouse. Learn

how to program with scratch and Python, or use devices that are available to people studying

computing, and do all the work on your existing desktop computer, including word processing,

games, Internet browsing, and high-definition video playback. Above all, Raspberry Pi is able to

interact with various fields of real life. With a variety of low-cost expansion tools, elementary and

middle school students are actually making an interesting attempt in active fields. For example, it

has been used in a wide range of digital maker projects, including music machines, parent detectors,

bird house observations using weather stations and infrared cameras. Raspberry Pie offers two

types of low-performance A-type and high-performance B-type boards and camera modules.

Raspberry Pie has Radio Corporation of America (RCA) and High Definition Multimedia

Interface (RCA) ports and audio ports for video output. It also has a local area network (LAN)

port for communication and can be connected to a keyboard or mouse via a USB port. There are

a number of GPIO (Genrel Purpose IO) and LEDs. The storage device has a SecureDigital (SD)

card slot and 512 MB of RAM on the processor. The processor contains a CPU and a graphics

processing unit (GPU). Raspberry pie development requires a raspberry chip board, SD card,

monitor and connection cable, keyboard, mouse, and 5V Micro USB for power supply. If you are

running Raspberry Pie for the first time, download the NOOBS (New Out Of Box Software)

provided by Raspberry Pie to your formatted SD card and save it on your SD card. After

preparation, connect the SD card and USB keyboard, mouse, monitor to raspberry pie in turn and

connect Ethernet cable if you need to connect to internet. Finally, when you connect the power

supply line Micro USB, the raspberry pie starts automatically. On the first boot, a list of installable

operating systems starts. Raspberry pie recommends the Raspbian operating system, and you can

20

set the time, date range, etc. when you select it. The default account is pi / raspberry, and the

process is the same as any other OS.

Edison [38] is the second open-source board from Intel following Galileo. It is targeted at

companies of all sizes in the manufacture of home appliances or IoT and related industries, and

low entry barrier to general purpose computing platforms. Edison is a small SD card size, low

power, abundant functionality and ecosystem support inspires creativity and helps companies

innovate with the rapid production of prototypes. Edison can be mounted in a standard SD card

slot, and the SD card connector is compatible with SDIO (Secure Digital Input Output), so it acts

as an existing SD card as an SDIO slave. As well as an SDIO host. The power supply also operates

at very low power consumption with the voltage supplied to the SD card slot. Edison uses the next

version of the Quark processor used in Galileo. Quark, powered by Galileo, was a single core in a

32nm process, but Edison uses a dual-core processor in an Intel Atom SoC based on the 22nm

Silvermont microarchitecture. WiFi, Bluetooth Low Energy, memory and storage, and supports

more than 30 industry standard I / O interfaces through a 70-pin connector. Software is also easy

to develop with support for Arduino, Node.js, Python, Wolfram, and Yocto Linux.

2.4. Existing IoT Protocol

This section provides an overview of the recent and popular IoT protocols which are suitable

for IoT application development. HTTP is the foundation of the client-server model used for the

Web. The more secure method to implement HTTP is to include only a client in your IoT device,

not a server. In other words, it is safer to build an IoT device that can only initiate connections,

not receive. Although HTTP can be utilized as a reliable protocol for IoT implementations but due

to its heavyweight protocol stack, it is not suitable for the resource constrained IoT devices.

XMPP (eXtensible Messaging and Pressence Protocl) is an international standard protocol

established by the Internet Engineering Task Force (IETF) for instant messengers. XMPP is

21

known as an open protocol for XML-based Internet communication. It is a protocol that is useful

for exchanging current status information with messages that can communicate with other users

in real time. It has expanded into signaling for VoIP, collaboration, lightweight middleware,

content syndication, and generalized routing of XML data. It is a contender for mass scale

management of consumer goods such as washers, dryers, refrigerators, and so on. XMPP is based

on the open-type protocol Jabber Instant Messenger. Jabber XMPP uses a unique name for the

client through the associated server communicates with other clients. Each client implements the

client of the protocol and the server provides the routing function. XML stream must be a TCP

socket. You can connect via HTTP polling or some other mechanism without needing to connect

to it. The server can route XML data to the appropriate addresses between domains. The gateway

also provides translation between external messaging domains and protocols.

MQ Telemetry Transport (MQTT) is an open source lightweight Publish / Subscribe protocol

made for the purpose of using as a machine, machine-to-machine (M2M) and IoT. In addition, it

is designed to be used in low-power and low-bandwidth environment implementing bidirectional

pub/sub messaging service for efficient communication with mobile devices, and simplify the

development between heterogeneous platforms. MQTT has the advantage of being able to operate

on a low-power, unreliable network, and no TCP/IP support. It is advantageous for small device

control and sensor information collection. These features are attracting particular attention in the

IOT area. Facebook Messenger has already used it to service it, and Korean telecom companies

are also using MQTT as a push service. M. Prihodko compared the processing between MQTT

and HTTP to measure and analyze battery consumption and performance, and introduced the

merits of MQTT. It helps minimize the resource requirements for your IoT device, while also

attempting to ensure reliability and some degree of assurance of delivery with grades of service.

MQTT targets large networks of small devices that need to be monitored or controlled from a

back-end server on the Internet. It is not designed for device-to-device transfer and it is not

22

designed to “multicast” data to many receivers. MQTT is extremely simple, offering few control

options.

CoAP is a lightweight version for limited Wireless Personal Area Network (WPAN) devices

that cannot be used due to resource limitations. Consider payload maximum size of 127 bytes for

802.15.4. Reduce as much as possible to reduce header fields and so on, encode in binary, use

simple UDP, encrypt in datagram unit using RFC 6347 DTLS, and use multicasting It provides a

discovery function, and it can be regarded as a publication-Subscribe event method in addition to

the polling method of the request-response. It is possible to operate it in the public network, but it

can be said that it is used only to the gateway connected to the WPAN, and the upper layer is used

to utilize the existing web framework by converting into HTTP.

CoAP is an open standard and not proprietary like some of the earlier protocols for networked

embedded systems [39]. The open standard means that the standardization process is open to

public and that it is free to be used by anyone without any royalty. This fact alone makes is perfect

for the global implementation of the Internet of Things.

The CoAP protocol has been designed with the focus towards resource constrained devices

associated with IoT. Thus it is light in comparison to other IoT protocols. It is based on the same

principles Like HTTP thus it is very easy to use. It provides datagrams based asynchronous

communication which is suitable from the perspective of constrained devices because it is very

lightweight in terms of resource consumption.

CoAP runs over IP where IPv6 is the future of IoT. This feature enables the future IoT to

easily integrate with the current IP based IT infrastructure of organizations and personal spaces.

Using the IP based communication infrastructure, CoAP can be utilize for interconnecting the IoT

devices with the HTTP and RESTful web and this can be done through simple proxies.

23

The CoAP is still in the standardization phase, new features are constantly being added to the

protocol stack. The emerging CBOR encoding for CoAP has proved to be a better suit for REST

than the conventional JSON and HTTP [40]. Since then, IETF has been using it as a standard

protocol. The open standard means that the standardization process is open to public and that it is

free to be used by anyone without any royalty. This fact alone makes is perfect for the global

implementation of the Internet of Things. IoT standardization organizations such as oneM2M,

Open Interconnect Consortium is also working on the standardization of IOT environment based

on CoAP. OneM2M is a common service platform that supports IoT application services based on

the CoAP protocol. In addition, OIC developed an open source project called IoTivity based on

CoAP, and defined the resource type, search procedure, and security specification for each device.

Recently CoAP interoperability test has been used as a communication protocol suitable for IoT

environment by interoperability between devices.

2.5. Existing Open Source Machine Learning Software

TensorFlow [41] is an open source software library for machine learning used in Google

products. The Google Brain team created Google for my research and product development and

was released on November 9, 2015 as the Apache 2.0 open source license. This is a second-

generation machine learning system that follows Google's first-generation machine learning

system, Disturbill, which has been in use since 2011. Because it is open source software, it can be

used by anyone who wants, such as students, developers. Google announced that TensorFlow

could run on smartphones and thousands of computers in the data center, a technology that can be

used flexibly without any restrictions. It is open source software announced by Google, so it

applied to Google search, voice recognition on Google app, 'smart reply service' which reads mail

from G mail and provides example reply that is suitable for the situation. TensorFlow is a machine

learning system that supports large-scale training and reasoning. TensorFlow uses the data flow

graph to represent the calculation and state of the algorithm. It maps nodes of the data flow graph

24

to multiple machines in the cluster, as well as machines across multiple computing devices,

including multi-core CPUs, general purpose GPUs, and custom design ASICs (called Tensor

Processing Units (TPUs)). It can effectively use hundreds of powerful (GPU) servers for rapid

training and run a trained model for production reasoning on a variety of platforms, from large

distributed clusters in the data center to mobile devices running locally The Unlike traditional data

flow systems where graph vertices represent functional calculations for immutable data,

TensorFlow allows vertex representations to have or update variable state calculations. The edge

carries a tensor (multidimensional array) between the nodes, and TensorFlow transparently inserts

the appropriate communication between the distributed subcomputers. By unified computing and

state management in a single programming model, TensorFlow allows programmers to try

different parallelization scenarios, such as unloading calculations to a server that maintains a

shared state to reduce network traffic. TensorFlow supports a variety of applications, focusing on

deep neural network training and reasoning.

WEKA [42] is a software for machine learning and data mining developed in the Java

language at the Department of Computer Science, University of Waikato, New Zealand. This tool

is the most downloaded software in the ACM CHI Society and has received special awards. Data

Mining by Professor Witten and Dr. Frank: practical machine learning tools and used in

conjunction with techniques. The main functions of WEKA are both command line and GUI

environment. It provides data preprocessing function, learning algorithm and evaluation method,

learning algorithm comparison function, and visualization function that visualizes processing

results. WEKA handles a simple flat file called arff. It is also possible to save a Microsoft Excel

file in csv format and convert it back to arff. All training methods in Weka can be accessed from

the command line, as part of the shell scripts, or from other Java programs that use the Weka API.

Weka also contains an alternative graphical user interface, called the "knowledge stream", which

you can use instead of a conductor. It is focused on a process focused on the process of data mining,

25

where individual learning components (represented by Java components) can be linked

graphically to create a "flow" of information. Finally, there is a third graphical user interface -

"Experimenter" - which is designed for experiments that compare performance (several) learning

patterns with (multiple) data sets. Experiments can be distributed to several computers with remote

experiment servers. The WEKA provides a Java interface so that WEKA’s functionality can also

be integrated into any Java application. Weka.jar includes all packages, which comes with the

installation package available on the WEKA homepage. Implementations of the algorithms are

also available so that they can be studied and modified.

Deeplearning4j [43] aims to be advanced plug and play, more convention than a configuration

that allows you to quickly prototype for non-researchers. DL4J is configured by scale, all DL4J

derivatives belong to their authors. DL4J can import neural network models from most of the basic

structures via Keras, including TensorFlow, Caffe, Torch and Theano, overcoming the gap

between the Python ecosystem and the JVM using cross-command tools for scientists, data

engineers and DevOps. Keras is used as the Python API Deeplearning4j.

Lasagne [44] is a lightweight Python library built into Theano that simplifies the creation of

neural network layers. Similarly, Keras [45] is a Python library that runs on Topo de Theano or

TensorFlow (Chollet, 2015), which allows you to quickly define a network architecture in terms

of layers and also includes features for image and text pre-processing. CuDNN is a highly

optimized GPU library For NVIDIA units that allow for faster training of deep learning networks.

It can greatly speed up the performance of a network in depth and is often referred to by other

packages above.

26

3. Proposed IoT Cooperation Architecture and

Composition System

The proposed IoT cooperation network consists of virtual and physical domain. The virtual

IoT cooperation network provides a graphical interface for users to customize IoT applications in

an intuitive way. The physical devices from the physical domain are represent as virtual objects

which encapsulate the behaviors of the physical devices. These virtual objects are combined to

generate service objects. Users utilize these service objects to customize the application process

which is further deployed to control the physical IoT network. The physical IoT cooperation

network consists of various IoT sensors/actuators, these devices receive and parse the deployment

processing information from virtual domain and then operate accordingly.

Figure 9: Conceptual physical/virtual IoT cooperation network

 Virtual IoT Cooperation Network

Physical IoT Cooperation Network
Virtual IoT Device

Physical IoT Device

27

Figure 10 illustrates the role of the Integrated IoT Proxy in proposed IoT cooperation network.

IoT devices in physical domain act like server and they require client to request the corresponding

functionality (e.g., reading sensing data from sensors or controlling the actuators) of the resources

associated with the server, the proposed architecture is based on the IoT proxy which acts like the

operating client for the connected IoT devices. The proxy decouples the IoT devices from the

virtual domain and it acts as the CoAP client and controls the operation of the connected devices

as specified from the virtual domain. The IoT proxy communicates with an IoT device through

CoAP / IoTivity protocol commands. For the connection to establish, the proxy must know the

initial information about the IoT device.

Virtual Domain

Integrated IoT Proxy

Virtual Object
Manager

Service Composition
Manager

BPM Editor

CoAP/IoTivity Operation Manager

Physical Domain

Sensors Actuators

Con Manager Cmd Generator

CoAP Communication

CoAP/IoTivity
Communication

CoAP Communication

Request

Response

Figure 10: Connection between Virtual Domain and Physical Domain

28

This initial information is the device IP address and CoAP port for the said server device. The

proxy, using the IP and port, establishes a connection with the server device and retrieves the

information about the available resources from the server in the form of a string. This information

about the resources on the CoAP server is then communicated to the virtual domain which initiates

the designer interface with the virtual representations of the available resources. The virtual

representation of the IoT resources is termed as virtual objects (VOs) in the virtual domain. The

communication between visual domain and the IoT proxy takes place using CoAP protocol. In

this communication, the IoT proxy acts as a server while the virtual domain acts as client entity.

The user r then uses these VOs to create a service flow which describes the functionality of the

device server at virtual domain in terms of the available resources. The service flow is termed as

the profile which is an XML representation of the graphical design. The IoT proxy uses the XML

profile from the virtual domain to extract the role of each CoAP resource by parsing the XML

profile and then dynamically translate the roles into CoAP/IoTivity commands. These commands

are then executed on the remote device server.

Figure 11 illustrates the sequence of connectivity among the Physical Domain, the IoT, and

the Virtual Domain. The figure also provides a general overview of the operation of the while

configuration. The Physical Domain consists of the physical device which is intended to be

operated via the IoT Proxy according to the graphical service design created through the Visual

Domain. For this purpose, these physical devices must be running with a known IP address and

port. The IoT Proxy connects as a client with the devices (CoAP /IoTivity server) using the IP and

port number.

Virtual Domain provides a graphical interface for users to customize IoT applications. The

users can represent the physical devices from the physical domain as virtual objects which

encapsulate the behaviors of the physical devices. And then combine these virtual objects to

generate service objects. The BPMN process is then created by the users to utilize these service

29

objects to customize the application process which is further deployed to control the Physical

Domain. The BPMN process is converted into XML format and sent to the IoT Proxy. The design

is saved as an XML file and can be reopened for updating the design flow. Once the visual design

is complete, the user can send the XML profile to the proxy. Proxy reads and parses the XML

profile to generate appropriate CoAP/IoTivity commands in order to operate the remote IoT device

according to the service process created by the user.

Virtual Domain IoT Proxy Physical Domain

Initialize resources

Wait for client

Activate virtual objects

Create service objevts

Create BPMN process

Convert to XML

Send XML Profile

Read and parse xml profile

Create commands

Execute commands

Response

Response

 Figure 11: Sequence of the IoT Architecture based on IoT Proxy

The following section is dedicated to the description of the proposed IoT system architecture.

The details of each layer are divided into shared components and layer specific or application

30

specific components of the system. Each layer is described in terms of components and the

activities performed by those components. The following text provides the description of each

layer. Figure 12 shows the detailed architecture of the system.

Service Objects

Objects

Logic Objects

Business Process

Applications/
channels

Devices

Physical
Cooperation

Network
Layer

Virtual Object
Layer

Service Logic
Layer

Business
Process Layer

Application
Layer

Physical
Devices

Virtual Device
Manager

Service
Composition

Manager

BPM Editor

IoT Prototype

S

S

S

AL L L

S

S

S

AL L L

Figure 12: Proposed IoT Composition Architecture

3.1. Physical Cooperation Network Layer

The physical cooperation network layer consists of the following IoT sensors and

actuators. The Thermistor is a resistor whose resistance varies significantly (more than in

standard resistors) with temperature. This module's output approaches 5v as the temperature

increases. As the temperature decreases, it approaches 0V. When connected to an input on the

31

Arduino using the TinkerKit Shield, expect to read values between 0 and 1023. This module

features a Thermistor, a signal amplifier, the standard TinkerKit 3pin connector, a green LED

that signals that the module is correctly powered and a yellow LED whose brightness changes

according to the temperature.

Figure 13: TinkerKit Thermistor Module

The HIH-4030/4031 Series Humidity Sensors are designed specifically for high volume OEM

(Original Equipment Manufacturer) users. Direct input to a controller or other device is made

possible by this sensor’s near linear voltage output. With a typical current draw of only 200 μA,

the HIH-4030/4031 Series is often ideally suited for low drain, battery operated systems. Tight

sensor interchangeability reduces or eliminates OEM production calibration costs. Individual

sensor calibration data is available. The HIH-4030/4031 Series delivers instrumentation-quality

RH (Relative Humidity) sensing performance in a competitively priced, solderable SMD. The

HIH-4030 is a covered integrated circuit humidity sensor. The HIH-4031 is a covered,

condensation-resistant, integrated circuit humidity sensor that is factory-fitted with a hydrophobic

filter allowing it to be used in condensing environments including industrial, medical and

commercial applications. The RH sensor uses a laser trimmed, thermoset polymer capacitive

sensing element with on-chip integrated signal conditioning. The sensing element's multilayer

construction provides excellent resistance to most application hazards such as condensation, dust,

dirt, oils and common environmental chemicals.

32

Figure 14: Humidity Sensor HIH-4030

The three type wind speed sensor is an instrument which can measure the wind speed. It is

composed of shell, the wind cup and circuit module.Photovoltaic modules, industrial

microcomputer processor, the current generator, electric current and so on are integrated in the

internal drive. The materials of sensor shell and wind cup is the aluminium alloy which use the

special mold precision casting technology,the size of the tolerance is very small, the precision of

the surface is very high, and internal circuit has been protection processing, the sensor has high

strength, weather resistance, corrosion resistance and waterproof. The plug of the cable is a

military plug, it has a good anticorrosive and prevent erosion performance that it can ensure the

instrument used for a long time, at the same time, In the case of using relevant specifications which

ensure the accuracy of the wind speed acquisition.

The material of the circuit pcb is the military grade A which ensure the stability of the

parameters and the quality of the electrical properties; Electronic components are all imported

industrial chip which makes overall has extremely reliable electromagnetic interference resistance,

and can ensure that the host can work normally in - 20 ℃ ~ + 50 ℃, humidity 35% ~ 85%

(condensation). This product can be widely used in engineering machinery (crane, crawler crane,

door crane, tower crane, etc.), railways, ports, docks, power plants, meteorological, cableway, the

environment, greenhouse, breeding, air conditioning, energy monitoring, agriculture, health, clean

room areas such as wind speed measurement, and the corresponding signal output.

33

Figure 15: Wind Speed Sensor (SKU: SEN0170)

L9110 Fan Module for Arduino Robot Design and Development Features: L9110 drive, can

control positive and negative going motion .Equipped with installing hole, compatible with

steering gear tiller control .High quality propeller, high efficiency .Can be easily blow out the

lighter flame (beyond 20 cm) .Can be used for fire the robots and necessary development for

firefighting, robot design and development necessary.

Figure 16: Arduino L9110 Fan Module

Figure 17 represents the structure of the physical IoT cooperation network. Three IoT sensors

that introduced previously have been integrated with the Intel Edison board respectively and

connected with the IoT proxy which is also implemented within the Intel Edison. The IoT Proxy

34

gets the sensing data from these three sensors and then generates the command which is sent to

the fan actuator to control the fan speed.

Wind Speed Sensor

Temperature Sensor

Humidity Sensor

IoT Proxy
Fan Actuator

Figure 17: Physical IoT Cooperation Network Structure

3.2. Virtual Object Network Layer

The Virtual Object Network Layer (VONL) includes the Virtual Device Manager from [46]

which represents the physical things in the form of VO Behavior, VO attributes and VO

visualization. The VO Behavior is the services or functions which can be utilized by the system

to interact with the physical thing represented by the VO. A simple example would be the name

of CoAP service which can be called remotely to interact with the physical thing. The VO

Attributes are the other information in the form of complete URI and Location etc. which

collectively describes the existence of the physical thing through its virtual representation. Finally,

VO Visualization is the graphical representation of VO depicting the type of the physical thing

35

represented through it. It is an icon or string of characters visually representing the underlying

physical entity such as thermometer icon to represent a temperature sensor.

The VO information acquisition interface is used to register physical things as virtual objects.

This interface can be a local data entry interface for a user or administrator to register the available

physical things or it can be exposed as an online service to enable users to remotely access and

register their devices. After the registration, the information related to VOs is stored at the VO

Repository. VO Repository holds the information about virtual objects in XML document for so

that it can be transferred easily over the Internet.

The Virtual Device Manager is the main component at the Virtual Object Network Layer

(VONL). It in collaboration with other classes such as the File Manager, Communication Manager

and Parser etc., provides the implementation of all the functionality associated with the VONL.

Figure 18 shows the startup and operational configuration model for the Virtual Device

Manager. The local and remote interfaces are used by the users to enter information related to any

CoAP enabled physical thing about which they have the required information. These interfaces

can also be used to add new VOs, Delete and update the previously registered VOs. Once a VO is

created for a physical thing, the visual representation, the attributes and the behavior of the

physical thing are encapsulated in this virtual object.

The visual representations for the VOs already registered can be viewed as a list in the main

interface from where the user can view the information associated with a VO, update and delete

any information for the VO. The XML Parser is used to convert the VO into XML schema already

defined for the VO representation. This XML version of VO is stored in the XML repository using

the File Manager component. In order to send or transfer the VO information to a remote

requesting component, the Communication Manager component through the File Manager reads

all the VOs and sends it to the requesting component according to a predefined information

exchange scheme.

36

Local Interface

XML
Repository

VO Data

Virtual
Object

Remote
Interface

Virtual
Object

Virtual
Object

Visual
Representation

Attributes &
Behavior

Communication
Manager

XML Praser

Physical Things

1. User enters the Device
Profile using VDM interface

has has

Add updateDelete

File Manager

2. User adds, updates or
deletes the device profile

3. VO is shown in VDM
interface

4. Device info is converted to
XML

6. VDM acts as server for
sharing VO with editor

5. VOs are stored as XML
document

Figure 18: Virtual Device Manager Operation Configuration

3.3. Service Logic Layer

The Service Logic Layer (SLL) is the part of the system where the unit services are composed

based on the information obtained from the virtual objects provided by the VONL. The Service

Composition Manager (SCM) from [46] is responsible for providing an intuitive and easy to use

visual environment where the VOs obtained from VOM are rendered as graphical module,

enabling the users to drag-n-drop modules onto the main canvas and join them to create service

objects. We updated this software by implementing logic objects in the service logic layer

37

repository which are represented as VOs. A Service Object consists of an Input VO joined to an

Output VO through the Join element. Each SO is represented as a combination of Module elements

and a join element in an XML document which is stored at the SO Repository.

The Service Objects created at the Service Composition Layer are stored as an XML

repository at the SCL. The SOs are designed in two types, one type is the independent SO which

contains all the required entities to be runnable as an isolated process. The second type of SO are

the one which define partial functionality (Unit SO) and can be combined into sequences to create

larger processes.

Service Composition Manager (SCM) is the main component at the service logic layer. All

the other components at the service composition layer are implemented as part of the SCM. The

SCM is a DIY graphical designer that is used to compose service objects (SO) from the virtual

objects (VO) and the associated information that is received from the Virtual Object Network

Layer. The SCM startup configuration is provided in

Figure 19. At startup, the SCM initializes all the user interface components including the Input

Module Panel, the Output Module Panel and the Work Panel. Based on the user’s choice, a client

component sends a connection request to the communication manager at the Virtual Object Layer.

If the connection is granted, the SCM receives a list of virtual object information. The information

includes resource name, URI, attributes and functionalities which can be remotely executed and

information about the visual representation of the device. The information is sent as XML strings

and upon reception by the SCM, it is parsed to initialize VOs. The virtual objects created are used

to populate the input and output panels so that the user can visualize them and ultimately interact

with them to compose them into service objects. Logic objects are defined in the repository of the

Service Logic Layer which provide machine learning algorithm based services to define the logic

38

condition between VOs. Once all the available VOs have been instantiated, the user can interact

with the SCM interface to compose Service Object (SO).

As SCM is designed to be a DIY service composer interface, the users perform simple drag-

n-drop, click and double-click operations using a mouse pointer to compose a design on the

WorkPanel, which acts as the main drawing canvas. The service composition process includes

joining the input and output modules.

Initialize UI
Components

Connect VOM
server

Receive VO
Information

Parse Information

Initialize VOs
User Drag n Drop

VOs

Join VO to create
SO

Setup Rules for SO
Save SO in XML

format

Deploy SO for
execution

Service Composition Manager startup

Input Module
Panel

WorkPanel

Output Module
Panel

Populate Panels

1. all UI initialized
with no VOs

2. Connect with
VDM for VO info

3. Convert Info to VO

4. Show VO graphically

5. user draws SO flow

6. Saves it for future use and update

7. Sends the SO
for execution to
the Deployment

Manager

Save to SO
Repository

8. Save XML
files to SO
Repository

39

Figure 19: Service Composition Manager Operation Configuration

An example of this process can be visualized as the fan control service where the temperature

sensor is the input VO, fuzzy controller is the LO and the fan is the output VO. The join between

the VO and LO then specify the function such as reading from the temperature sensor. And then

the fuzzy controller LO computes the output value that is the input value of the fan VO. The join

between the fuzzy controller LO and the fan VO will then specify the function such as controlling

the fan actuator. Once the service composition is completed, the visual SO is converted into XML

data and stored at the SO repository. The SOs can also be deployed and executed for testing

through the service deployment manager at the Service Composition Layer.

3.4. Business Process Layer

Business Process Layer (BPL) basically represents the Business Process Layer in the existing

architectures. As the proposed system uses BPM approach for providing an IoT application

development environment, the layer has been termed as the BPL. At the BPL, the application

specific components include the BPM Editor from [46], The Process Object Repository and the

Process Execution Engine. The BPL utilizes the service objects composed at the service

composition layer and represents them as business process modeling notations. Normally a service

object is represented as a BPMN task notation while other notations such as Gateways are defined

at the BPL for functions such as condition evaluation or setting multiple paths in a process model,

Script notations represents data processing and generalized actions while Events represent the start

and end of process models. Events can be further utilized for message passing among tasks and

other notifications but the current implementation utilizes them only as the demarcating elements

in the IoT process models.

40

The BPM Editor application enables the user to create a functionality flow for an IoT

environment in the form of a graphical business process model. The user creates rules and applies

various scripts according to the conventions of the BPMN. This model can be saved as a process

object in the repository at BPL and reloaded into the editor application for update at any time. An

optimized version of the same file is created which can be used by the Deployment Manager at

the BPL.

BPM Editor is the main component of the Business Process Layer (BPL) which acquires the

XML representations of the Service Objects from the SO repository at the Service Composition

Layer and represents them as Business Process Modeling Notation (BPMN) for the user. BPMN

is a standardized set of notations used for requirements analysis in software development and for

describing processes in business setups. The user utilizes the standardized notations with an

intuitive drag-n-drop approach to design IoT processes or applications according to their own

needs. Figure 20 shows the startup and operational configuration for the BPM.

The BPM Editor initializes all the user interface components and the communication

components at the startup. In the figure, the communication interface is represented by the second

step if the SO repository is located at a remote location otherwise a simple IO operation is

performed to retrieve the XML files representing the service objects. The user interfaces of the

BPM Editor include a BPMN Panel which displays the general notations for creating a business

process flow. These general BPM notations include Task notation, Gateway notation, Script and

event notations. The service objects retrieved from the repository are represented as BPMN tasks

while the other notations provide supporting logic for the creation of BPM flows. These BPMNs

are XAML based classes which can be dragged and dropped onto the main canvas by the user.

The BPMN Panel is basically populated when the parser module associated with the BPM Editor

receives and parses the service objects from SCM repository. The parser module parses the xml

files, retrieves the input and output components of the service object along with the operational

41

rules if any, and initializes the BPM notations according to the tasks represented by the service

objects.

BPM Editor initializes all the user interface components and the communication components

at the startup. In the Figure 20, the communication interface is represented by the second step if

the SO repository is located at a remote location otherwise a simple IO operation is performed to

retrieve the XML files representing the service objects. The user interfaces of the BPM Editor

include a BPMN Panel which displays the general notations for creating a business process flow.

These general BPM notations include Task notation, Gateway notation, Script and event notations.

42

BPM Editor startup and Operation

Initialize UI

BPM Editor UI

BPMN View UI

Connect SCM
Repository

Retrieve SO
information

Parse Information

Business Process
Model for IoT
process/App

Create list of
available BPM

tasks

Create BPMN
Representation for

SO

1. Initialize all UI Forms2. Connect SCM for SO

3. Convert info to Objects

4. Initialize
objects

5. load BPMN

6. User
interaction

7. Composing
BPM

Drag-n-Drop/
Simple DIY Actions

BPM Editing &
Update

Save BPM
BPM Repository

(XML Files)
Load BPM
(Update)

8. Save as

9. Load BPM XML

10. Load visual
BPM

Figure 20: BPM Editor Operational Configuration

The service objects retrieved from the repository are represented as BPMN tasks while the

other notations provide supporting logic for the creation of BPM flows. These BPMNs are XAML

based classes which can be dragged and dropped onto the main canvas by the user. The BPMN

Panel is basically populated when the parser module associated with the BPM Editor receives and

parses the service objects from SCM repository. The parser module parses the xml files, retrieves

43

the input and output components of the service object along with the operational rules if any, and

initializes the BPM notations according to the tasks represented by the service objects.

Connect BPM
Repository

Receive BPM
Information

Parse/ create
objects

(BPMN Types)

Sort and Sequence
the Objects

Send Task for
Remote Execution

Function Calls

BPM Editor Deployment Engine Operation

BPM Execution
Engine

1. Acquire BPM for
deployment

2. Convert Info to Objects

3. Load BPM Objects

4. Execute Remote Calls

Execution at
Remote CoAP

Server

CoAP.NET

6. Return Execution
State

5. Post Task XML

Figure 21: BPM Deployment Engine Operation Configuration

The user then composes a BPM by using drag-n-drop and simple actions such as mouse-clicks

and etc. The graphical BPM created at this stage basically represents the operational logic of the

IoT process or IoT application. The BPM Editor UI provides editing functionalities such as copy,

paste and delete etc. to provide an easy editing environment to the user. Once the BPM

composition process is completed by the user, the graphical BPM is converted into an XML

44

representation for storage and later on for loading into the BPM Editor for further updates and

changes if the user wishes so.

The BPM Deployment Engine is responsible for the deployment and execution of the BPM

models created by the users through the BPM Editor. The BPM Deployment Engine creates a

sequence for the execution of individual tasks by parsing the connections among various BPM

notations as part of the graphical model along with the location of each graphical item in the model.

The user can then choose to deploy the model. For the execution of the deployed BPM, the

execution engine is responsible to send the XML representation of each task to the concerned

remote IoT resource. The execution state or any data is returned to the execution engine which

further decides how to proceed with the execution of the BPM. The BPMN Gateways provides

branching and execution logic for the process and the BPMN Scripts provide functions such as

data processing or network communications which are too costly for the remote IoT resources and

thus are executed by the execution engine.

In order to provide a detailed and concise picture of the whole system’s design Figure 22–

shows the overall collaboration among various layers with the BPL at the center of the process.

The CoAP enabled IoT resources means the physical devices with some sort of CoAP services

and functionality which can be invoked remotely via a CoAP client. For these IoT resources, the

users create virtual objects by providing the necessary information to the system via the Virtual

Object Manager interface. The virtual objects created are utilized by the Service Composition

Manager to enable the users to compose Service Objects. The SCM implements simple and

intuitive operations such as drag-n-drop and mouse-clicks to provide customized service object

composition environment. A Service Object composed by the user consists of three main

components i.e. Input resource, Output resource and the operational rule. The input resource is

normally represented by the VO of a sensing device such as thermistor or gas detector etc., the

45

output resource is represented by a VO of an actuating device such a buzzer or LED and the

operational condition is graphically represented by a join between the two resources.

Virtual Device Manager

Service Object
Repository
(XML Files)

Service Composition
Manager

Virtual Objects

BPM
Deployment

Engine

IoT
Smart
Indoor
Space

SO
Acquisition

SO Parsing

BPMN Object
Creation

BPM Creation
BPM

Deployment

User
Interaction

Device
Information

1. Select SOs

2. XML based SO files
are parsed to extract

information

3. Initialize BPMN
shapes

4. Display BPMN

5. Execute BPM

6. Select &
control

Task

Done

Device information
(URI,Services,Location etc.
are input by the user to
register devices.)

Input Devices:
Temperature Sensor
Humidity sensor

Service Composition:
User drags input, output
devices on SCM canvas
Join them and set
operation rule

 User choose
the required
Service
Objects

 XML files are
selected by
the user

BPMN objects are created
with the information
extracted in step2

 Start event
 User drags Task notation
 User select the SO
 Gateway for conditional

logic
 Connect all notations
 End event

 Input device URI,
Service, Location
etc.

 Output device URI,
Service, Location
etc.

 Operational
conditional values

 Load BPM for deployment
 XML parsing for extracting

information
 Execute sequence
 CoAP post to send XML

task to device

Figure 22: IoT Application Development Procedure in terms of the BPL Perspective

The join basically set the trigger condition for the actuating resource for the input resource.

The graphically composed. Service Objects are editable by the user as an XML version of each

SO is saved to the Service Object Repository at the Service Composition Layer. The same

46

repository is used by the Business Process Layer to acquire the definitions of Service Object in

order to represent them as Business Process Modeling Notations.

For the conversion of Service Objects into Business Process Modeling Notations (BPMN),

the BPM Editor first acquires the relevant Service Objects from the SO Repository at the Service

Composition Layer. This has been represented as the first step in the collaboration diagram. The

SO are in XML format and the BPM Editor uses the internal parser module to extract the necessary

information about the associated resources. This information is used to initialize the BPMN

objects which are clone-able graphical representations so that users can utilize them to create their

BPM based IoT application model. BPM Editor provides a drag-n-drop based DIY modeling

environment for the users to develop process models for their IoT applications and it also enables

them to easily edit and change their models. The graphical models are also saved as XML files for

this purpose to enable the users to share and update the models using the BPM Editor.

Once a model is completed and the user wants to deploy the IoT application represented by

the BPM, the optimized XML version of the model is loaded into the BPM Deployment Engine.

The BPM Deployment Engine is separate module at the Business Process Layer which is capable

of communicating with the remote IoT devices. The model is parsed and converted into SO based

tasks along with the application logic provided by the BPM notations. A sequence of execution is

generated based on the graphical composition of the model as created by the user. The execution

engine at the BPM Deployment Engine then uses the sequence to send XML based task definitions

to the remote devices via CoAP Post calls. The remote devices executes the tasks by executing

any relevant CoAP services.

3.5. Application Layer

The application layer specifies the communication protocol and interfaces used for the

physical IoT prototype. This layer consists of three types of node: sensor node, proxy node and

47

actuator node. Sensor node is responsible for collecting environment data from physical IoT

sensors. Actuator node takes charge of operating the physical IoT actuators. Proxy node is in

charge of supporting communication between sensor nodes and actuator nodes. Logic objects

provides intelligent prediction and control services to operate the IoT actuators. Communication

channel defines the specified communication protocol for data and command transmission.

S

L

A

P Proxy Node

Sensor Node

Logic Node

Actuator Node

Communication
Channel

S

S

S

AL L L

P

Figure 23: IoT Application Prototype Conceptual

Figure 24 illustrates the design of the proposed IoT application prototype. Three sensor nodes

(Temperature, Humidity and Wind Speed) are connected with the proxy. The proxy contains three

logic objects which provides the PMV calculation, prediction and fuzzy controlling functions in

order to automatically control the fan actuator node in the indoor environment. The following

section explains the functionality of logic objects in detail.

48

Temperature

Humidity

Wind Speed

Fan

Proxy

PMV Pred Fuzzy

Figure 24: Design of the IoT Application Prototype

3.6. PMV (Predicted Mean Vote)

PMV [47] is arguably the most widely used thermal comfort index today. The ISO Standard

7730 (ISO 1984), "Moderate Thermal Environments - Determination of the PMV and PPD Indices

and Specification of the Conditions for Thermal Comfort," uses limits on PMV as an explicit

definition of the comfort zone. The Predicted Mean Vote (PMV) refers to a thermal scale that runs

from Cold (-3) to Hot (+3) as shown as table 1. The original data was collected by subjecting a

large number of people (reputedly many thousands of Israeli soldiers) to different conditions

within a climate chamber and having them select a position on the scale the best described their

comfort sensation. A mathematical model of the relationship between all the environmental and

physiological factors considered was then derived from the data. The result relates the size thermal

comfort factors to each other through heat balance principles and produces the following sensation

scale.

49

Table 1. Predicted Mean Vote Sensation Scale

The PMV equation [48] only applies to humans exposed for a long period to constant

conditions at a constant metabolic rate. Fanger’s thermal comfort model is used to calculate PMV

in the following equation.

(hc = convective transfer coefficient w/m2 K)

H - 0.31(57.4 - 0.07H - Pa) - 0.42(H-58) - 0.0017M (58.7 - Pa) - 0.0014M (34 - Ta) = 3.9 x 10-

8fcl {(Tcl + 273)4 - (Tr + 273)4} + fcl hc (Tcl - Ta) (1)

Where the clothing surface temperature, Tcl, is given by

Tcl = 35.7 - 0.0275H + 0.155Iclo {H - 0.31(57.4 - 0.07H - Pa) - 0.42(H - 58) - 0.0017M (58.7 -

Pa) - 0.0014M (34 - Ta)}. (2)

In addition to this, discomfort may occur when the skin is wetted (sweat, water, etc.) and

Fanger has produced an equation for skin wetness which can be used as a test to exclude conditions

which satisfy the comfort equation:

50

The problem with Fanger's equation is that when people are not satisfied, this is not a measure

of how uncomfortable deviation is; therefore Fanger developed PMV = mean vote on ASHRAE

scale (Hot warm slightly warm neutral slightly cool cold). PMV can be predicted from Fanger's

equation thus:

PMV = 4 + (0.303 exp (-0.036H) + 0.0275) x {6.57 + 0.46H + 0.31Pa + 0.0017HPa + 0.0014HTa

- 4.13 fcl (1 + 0.01dT) (Tcl - Tr) - hcfcl (Tcl - Ta)} where Tcl (surface temperature of clothed

body) = 35.7 - 0.0275H + 0.155 Iclofcl (4.13 (1 + 0.Old Temp) 1 + 0.155 Iclofcl (4.13 (1 +

0.Old Temp) thc where hc = 2.4(Tcl - Ta) 0.25 or 12.1 square root of v (air speed) which is

greater and dT = Tr - 22. (3)

Table 2. Nomenclature, description and measure units of the variables Involved in the PMV equation

Table 2 illustrates nomenclature, description and measure units of the variables Involved in the

PMV equation.

51

The metabolic rate, or human body heat or power production, is often measured in the unit

"Met". The metabolic rate of a relaxed seated person is one (1) Met, where

1 Met = 58 W/m2 (356 Btu/hr) (4)

The mean surface area, the Du-Bois area, of the human body is approximately 1.8 m2 (19.4

ft2). The total metabolic heat for a mean body can be calculated by multiplying with the area. The

total heat from a relaxed seated person with mean surface area would be

58 W/m2 x 1.8 m2 = 104 W (356 Btu/hr) (5)

3.7. PMV Prediction based on Linear Regression Algorithm

In this section, we propose one linear regression-based algorithm to predict the PMV Index

value in the indoor environment. The key idea is to adopt multiple linear regression (MLR) for

estimating and evaluating environment parameter coefficients based on the recorded indoor

sensing data. MLR is chosen because it adopts characteristic analysis, which attempts to model

the environment parameter behavior for PMV Index value influence. First, we review briefly the

multiple regression model [49]. There is a continuous random variable called the dependent

variable, Y that stands for PMV Index value, and a number of independent variables, x1, x2, . . . ,

xp which represents for temperature, humidity and wind speed. Our purpose is to predict the value

of the dependent variable (also referred to as the response variable) using a linear function of the

independent variables.The values of the independent variables(also referred to as predictor

variables, regressors or covariates) are known quantities for purposes of prediction, the model is:

Y = β0 + β1x1 + β2x2 + · · · + βpxp + ε (6)

52

where ε, the “noise” variable, is a normally distributed random variable with mean equal to

zero and standard deviation σ whose value we do not know. We also do not know the values of

the coefficients β0, β1, β2, . . . , βp. We estimate all these unknown values from the available data.

The data consist of n rows of observations also called cases, which give us values yi, xi1,

xi2, . . . , xip; I = 1, 2, . . . , n. The estimates for the β coefficients are computed so as to minimize

the sum of squares of differences between the fitted (predicted) values at the observed values in

the data. The sum of squared differences is given by

 (7)

Let us denote the values of the coefficients that minimize this expression by 0, 1, 2, . . . , p.

These are our estimates for the unknown values and are called OLS (ordinary least squares)

estimates in the literature. Once we have computed the estimates 0, 1, 2, . . . , p. We can calculate

an unbiased estimate for σ2 using the formula:

 (8)

We plug in the values of 0, 1, 2, . . . , p in the linear regression model (1) to predict the value

of the dependent value from known values of the independent values, x1, x2, . . . , xp. The

predicted value, , is computed from the equation

 (9)

53

Predictions based on this equation are the best predictions possible in the sense that they will

be unbiased (equal to the true values on the average) and will have the smallest expected squared

error.

An important and interesting fact for our purposes is that even if we drop the assumption of

normality and allow the noise variables to follow arbitrary distributions, these estimates are very

good for prediction. We can show that predictions based on these estimates are the best linear

predictions in that they minimize the expected squared error. In other words, amongst all linear

models, as defined by equation above, the model using the least squares estimates.

0,

1,

2, . . . ,

p, (10)

will give the smallest value of squared error on the average. We elaborate on this idea in the next

section.

The Normal distribution assumption was required to derive confidence intervals for

predictions. In data mining applications we have two distinct sets of data: the training data set and

the validation data set that are both representative of the relationship between the dependent and

independent variables. The training data is used to estimate the regression coefficients 0, 1, 2, . . . ,

p. The validation data set constitutes a “hold-out” sample and is not used in computing the

coefficient estimates. This enables us to estimate the error in our predictions without having to

assume that the noise variables follow the Normal distribution. We use the training data to fit the

model and to estimate the coefficients. These coefficient estimates are used to make predictions

for each case in the validation data. The prediction for each case is then compared to value of the

dependent variable that was actually observed in the validation data. The average of the square of

this error enables us to compare different models and to assess the accuracy of the model in making

predictions.

54

3.8. Fan Control based on Fuzzy Logic with PMV

In a thermal control scenario, various standard control schemes, such as an on/off switching

thermostats, proportional-integral (PI) and proportional-integral-derivative (PID), have been

extensively used in building engineering [50], [51]. Generally all these schemes do not have any

direct knowledge of the system to be controlled and they are designed with constant parameters.

They thus provide poor control performance for noisy, disturbed and non-linear processes without

taking into account users’ behavior [52].

Although some PMV based control methods exist, they treat all occupants the same, do not

take into account location and PMV itself [53] and are mostly model based approaches [54]. We

developed a novel fuzzy controller for HVAC systems which takes into account the PMV index.

Furthermore, considering all the control systems related issues we developed a model-free based

controller and, at the same time, the adoption of fuzzy logic makes it easier to implement on a

microcontroller.

The approach considered for the PMV optimization based control is the linguistic fuzzy

modeling (LFM) with Mamdani rule structure [55] due to its capability to model human

knowledge in an explicit way. Input variables chosen for the FIS control are:

• The value of the PMV index

• The variation of the PMV index

The output of the FIS engine is the FanCoilSpeed. The membership functions of the variables

involved in the fuzzy system consist of triangular and trapezoidal functions chosen by experts in

the field of thermal regulation. The membership functions used for the input and output fuzzy sets

are shown Figure 25, 26, 27. The triangular membership functions are used for all the fuzzy sets

of the input and the output vector. Mathematically, this representation can be interpreted as follows:

55

 (11)

Values chosen for the input and output variables fuzzy sets are reported in Table 3.

Figure 25: Fuzzy Sets for the Input Variable PMV

Figure 26: Fuzzy Sets for the Input Variable ∆PMV

56

Figure 27: Fuzzy Sets for the Output Variable Fan Speed

The Max-Min-mCoA fuzzy inference algorithm is considered. The fuzzy logic controller uses

the following equation to calculate the geometric center of the full area under the scaled

membership functions:

 (12)

Where CoA is the modified center of area and f(x) the output of the inference process. The

interval of integration is between the minimum membership function value and the maximum

membership function value. Note that this interval might extend beyond the range of the output

variable. The PMV method, as it was developed, basically states that the indoor temperature

should not change according to the seasons considering one set temperature year-round. The aim

of the fuzzy logic controller is to overcome this issue adapting the comfort conditions to the

seasonality.

57

Table 3: Considered fuzzy sets for input and output variables

Input variables Linguistic terms Fuzzy sets (a,b,c,)

Predicted

Mean Vote

(PMV)

Too Cold -3, -2, -0.4

Winter Comfort -0.6, -0.3, 0

Neutral -0.2, 0, 0.2

Summer Comfort 0, 0.4, 0.7

Too Hot 0.4, 2 +3

PMV

Variation

(∆PMV)

Negative Big -3, -2, -0.3

Negative Medium -0.5, -0.3, -0.1

Negative Small -0.2, -0.1, 0

Zero -0.05, 0.01, 0.05

Positive Small 0, 0.1, 0.2

Positive Medium 0.1, 0.3, 0.5

Positive Big 0.3, 2, +3

Output variable Linguistic terms Fuzzy sets (a,b,c)

Fan Speed

(U)

Zero 0, 0.2, 0.2

Low 0.1, 0.2, 0.4

Medium 0.2, 0.4, 0.7

High 0.4, 0.6, 0.9

Very High 0.7, 1, 1

58

Indoor
Conditions

PMV
Calculation

Fan Speed
Control

Fuzzy
Inference

System

Rule-base

Humidity

Temperature

Air Velocity

Predicted
PMV

∆ PMV

U

PMV
Prediction

PMV

D

Figure 28. Fuzzy Controller Block Diagram

Figure 28 depicts the block diagram of the comfort control process. PMV index is computed

in the PMV calculation module and measuring indoor air temperature, relative humidity and air

velocity. The current PMV index values are used to build prediction module to predict the PMV

index. Values of predicted PMV and its variation are the inputs for the Fuzzy Inference System

(FIS). The FIS output values (U) are transformed in the fan speed control module in which the

control value (D) for the fan coil is its speed percentage (0 - 100%) with respect the max speed.

Considering fuzzy sets of table 4, if the indoor comfort conditions is toohot then the control system

acts to speed up the fan module to obtain and maintain the indoor environment comfort. On the

contrary when the indoor comfort condition is neutral and the controller stops the fan module since

the indoor environment condition is comfortable. Furthermore the PMV variation in the FIS allow

the control system to act as a regulator, we built 35 fuzzy rules and a sample is shown in Table 4.

59

Table 4: Sample of the fuzzy rules used

PMV ∆PMV U

 TH NS VH

TH NB H

SC NM Z

SC PS M

N NS Z

N Z Z

60

4. Implementation

Figure 29 represents the previously described architecture from the perspective of the use-case

by highlighting the prototype IoT smart space. For the purpose of the smart space prototype

demonstration, the temperature sensor, humidity sensor, wind sensor, proxy and the fan actuator

are implemented as IoT devices. The Physical Network Layer of the architecture represents these

components as separate physical devices. The information of the implemented device components

is provided to the Virtual Object Layer which converts the information into virtual objects. The

Service Logic Layer utilizes the virtual objects from the virtual object repository at the Virtual

Object Layer and the logic objects from the service object repository at the Service Logic Layer.

The virtual objects are visualized using icons which can be interacted with like any Windows

based control. The Business Process Layer acquires the service object definitions from the SO

repository at Service Layer, parses the XML representation of the service objects to extract

information and then represent the services as BPMN task notations. Once the BPM is created, it

can be deployed via the deployment engine and the IoT devices will perform the operations

accordingly.

4.1. Virtual Device Manager

 Figure 30 shows the screen shot of the Virtual Device Manager module at the Virtual Object

Network Layer. This module helps the users to encapsulate the attributes of their IoT resources. It

provides an intuitive way to bind the IoT resources with a virtual representation so that

inexperienced users are able to interact and manipulate. User manually provides the details with

respect to their IoT resources in the form of URI, location, type and properties. Any device which

61

supports the proposed protocols can be added as a resource to the system via this approach. URI

specifies the protocol and address through which the device can be uniquely identified. Device

type tag specifies the type of the specific IoT devices. Location tag is used for specifying the

location of the remote IoT resource. Properties tag specifies the available services which can be

executed via the specific resource.

TSO

Service Objects

Virtual Objects

Logic Objects

Applications/
channels

Physical
Network

Layer

Virtual Object
Layer

Service Logic
Layer

Business
Process Layer

Application
Layer

Business Process

Physical
Devices

Virtual Device
Manager

Service
Composition

Manager

BPM
Editor

IoT Smart
Space

Prototype

P

S

S

S

AL L L

HSO
WSO FSO

Proxy Node

FSO

TSO

HSO

WSO

Fan Node

Wind Speed Node

Humidity
Node

Temperature
Node

PMV LO Prediciton LO Fuzzy LO

Fan
Proxy

Wind Speed

Temperature

Humidity

Figure 29: IoT Smart Space Implementation in the Proposed Architecture

62

Figure 30: Virtual Device Manager Main Interface

Figure 31 represents the screen shot for creating virtual device in the Virtual Device Manager.

Users need to specify the device URI, device type, location and properties. After that, users can

save the input information and the Virtual Device Manager will automatically generate the virtual

device information using XML representation as shown in Figure 31.

Table 5 illustrates device in the smart indoor space which are temperature sensor module,

humidity sensor module, wind sensor module, fan module and proxy module.

Temperature sensor module: TinkerKit T000200 thermistor is specifically designed to be used

with the TinkerKit development toolkit for Arduino. The Thermistor is a resistor whose resistance

varies significantly (more than in standard resistors) with temperature. This module's output

approaches 5v as the temperature increases. As the temperature decreases, it approaches 0V. The

module has been utilized to implement Intel Edison based CoAP services for providing

temperature values in Centigrade as well as Fahrenheit scales.

63

Wind sensor module: Wind sensor is used to measure the wind speed. The SEN1070 is a three-

cup anemometer that monitors wind speed for the range of 0 to 30m/s. The wind sensor module

has been utilized to implement Intel Edison based CoAP services for providing the air speed values

by level.

Figure 31: Device Interface for Creating Virtual Objects

Humidity sensor module: The HIH-4030/4031 Series Humidity Sensors are designed

specifically for high volume OEM (Original Equipment Manufacturer) users. Direct input to a

controller or other device is made possible by this sensor’s near linear voltage output. With a

typical current draw of only 200 μA, the HIH-4030/4031 Series is often ideally suited for low

drain, battery operated systems. The humidity sensor module has been utilized to implement Intel

Edison based CoAP services for measuring humidity values.

64

Fan module: Arduino L9110 module is used as an IoT actuator in the proposed prototype.

L9110 drive which can control the positive & negative turning with mounting holes, high quality

and high efficiency. The fan actuator module has been utilized to implement Intel Edison based

CoAP services for setting fan coil speed.

IoT proxy module: The IoT proxy establishes the connection between the virtual domain and

physical domain. The IoT proxy module has been utilized to implement Intel Edison based CoAP

/ IoTivity services for transferring sensing data from physical domain to virtual domain and

providing prediction service to maintain indoor comfort index.

Table 5: Device Implementation Summary for Smart Indoor Space

Devices Temperature
Sensor

Wind Sensor Humidity
Sensor

Fan Actuator Proxy Node

Visual
Representation

Servo Model TinkerKit
T000200
thermistor
module

Wind Speed
Sensor
(SKU:SEN0170)

Humidity
Sensor (HIH-
4030)

Arduino
L9110 Fan
Module

None

Server Intel Edison
with libcoap

Intel Edison
with libcoap

Intel Edison
with libcoap

Intel Edison
with IoTivity

Intel Edison
with CoAP/
IoTivity

Function GetTempC,
GetTempF

GetAir GetHumidity SetFan GetPMV,
MLR
Fuzzy

Figure 32 presents the XML representation for virtual objects in the form of device nodes.

Four nodes have been expanded in the figure which shows the stored information for a temperature

sensor, humidity sensor, wind sensor and a fan device. The URI specifies the protocol and address

through which the device can be uniquely identified. The Properties tag specifies the available

services which can be executed via the specific resource. A resource can also have more than one

65

property (executable functions) which is specified by the sub-tags <P> in the Properties tag. Both

URI and an instance of the Properties tag can be utilized to provide a uniquely addressable function

of the remote resource.

The Location tag is used for specifying the location of the remote IoT resource. This tag and

more information regarding the owner or allowed users etc. can be considered for future studies

related to the security of the system.

Figure 32: XML Representation of Created Virtual Devices

4.2. Service Composition Manager

66

Service Composition Manager (SCM) is the main module at the Service Layer. A snap shot

of the SCM interface is shown in Figure 33. The main objective of this module is to allow the user

to easily visualize, interact with and manipulate the virtual objects created by Virtual Device

Manager. The SCM is developed in C# environment as a Windows form application.

For this purpose the virtual objects are separately represented as input and output modules.

These modules can be directly dragged and dropped on a canvas through the basic Windows OS

mouse events. The VO modules on the canvas can then be connected with simple joining lines

which represents connection between the input and output VOs. Finally, the user can set the rules

of operations for the joined virtual objects. For this purpose simple and intuitive approach has

been implemented. The user can double-click each VO to display the settings form for the VO.

There the user can specify the values of attributes, set ranges for the conditional operations and

choose conditional operators for the evaluation of conditional logic. The process is illustrated in

Figure 33.

67

Figure 33: Service Composition Manager Interface

The SCM interface provides user-centric approach for the development of service objects

based on the virtual representation of IoT resources. The interface is implemented with standard

tool strip for efficient editing and composition of service objects to enable user efficiency and

better DIY environment. Menus and shortcuts have been implemented for providing the user with

standardized editing and composition functions such as cut, copy, paste, detailed viewing of the

graphical models and commenting the models for easy recognition of implemented functionalities.

68

Figure 34: Service Object Process in Service Composition Manager

The joining of input and output VOs in the SCM creates a service object (SO). The process

has been illustrated in Figure 34. These SOs are stored as XML documents which separately

represent each input and output VO as part of a service object. The connections between these

VOs are also represented in the XML document in the form of a join node which specifies the

source and sink entities for the connection. Hence the VOs can be stored, opened and updated

according to the user requirements.

69

Table 6: Logic Objects Implementation Summary

Table 6 illustrates the detail information of the logic objects at the Service Layer. The PMV

Index module is designed to compute PMV index value using sensing data from the other IoT

sensors. The module has been utilized to implement Intel Edison based CoAP services in pure

Java programming language. The LR Predictor module is specifically designed to provide PMV

index prediction service based on sensing data information. The module has been utilized to

implement Intel Edison based CoAP services using Weka library. The Fuzzy Controller module

is specifically designed to control the IoT fan actuator considering PMV index value and PMV

index variation value. The module has been utilized to implement Intel Edison based CoAP

services using jFuzzyLogic library.

Figure 35 shows a sample of the XML documents representing Service Objects (SO). Each

SO is represented by the JoinInfo tag where unique identifiers specifies the input and output device

associated with the specific service object. The same identifiers are used in the DeviceModule tags

as shown in the figure. The DeviceModule tags encapsulate the information about each resource

as part of the saved service objects. This information include the device type, complete URI to

Objects PMV Index LR Predictor Fuzzy Controller

Visual
Representation

Server Intel Edison with
Californium

Intel Edison with
Californium

Intel Edison with
Californium

Function GetPMV StartPrediction StartFIS

Library Native Java Weka jFuzzyLogic

70

access the remote IoT resource, the service name selected by the user at SCM to be executed along

with the operational conditions as part of the SO for the specific device and the location of the

remote resource.

Figure 35: XML Representation of Service Objects

The list of names encapsulated in the tag named CoAPServices represents all the services

supported by the specific device. This list is included in the service object definitions for enabling

the SCM to de-serialize the XML files and graphically render it with complete information if the

user wishes to update the SO later. The location information would further be utilized for security

and user rights allocation in the future studies.

71

4.3. BPM Editor

Business Process Model Editor is responsible for the representation of the Service Objects

composed at the SCM as Business Process Modeling Notations (BPMN). The main interface for

BPM Editor is shown in Figure 36. The aim of providing a BPMN based representation of the

Service Objects is to provide a DIY interface for anyone with the basic knowledge of the notations

to create and deploy their IoT applications. It also eliminates the requirement of any programming

skills because the user just has to create a graphical model and it is directly deployed as an IoT

application.

Figure 36: BPM Editor Interface

The main interface is divided into three main areas. The first is the BPMN Panel on the left

side. This panel groups the various implemented notations in the form of a shape palette. Each

shape in the BPMN panel is an instance of the XAML based class which is derived from a common

class termed as ToolboxItem. This class provides the cloning attributes to each shape derived from

it and thus enabling the shapes to be dragged and dropped by the users. The main BPMN notations

72

which have been implemented as part of this prototype system include the Task, Script, Gateway

and the swimlane notation. In the event section of the BPMN panel, Start and Stop events have

been implemented. These event notations specify the start and finish of a process represented by

the graphical BPM.

Figure 37: Loading Service Objects at BPM Editor

The top area of the interface provides an application level toolbar containing editing

functionalities necessary for shapes and model composition. The toolbar is implemented in a

standardized way to resemble the toolbars provided by well-known and common applications such

as Microsoft Word and Microsoft PowerPoint. This feature enables the users to easily recognize

various editing functionalities through general knowledge and helps in model development.

73

GetTemp

GetHum

GetWind
SetSpeedStartFis

GetPMV
StartPrediction

Figure 38: Generated BPMN in BPM Editor

For a new BPM project to be created by the user, the user must import the necessary Service

Objects that will be part of the specific BPM. For this purpose, the BPM Editor provides a simple

interface where the user can connect to the SO repository at the Service Composition Layer and

select the XML files for the necessary SOs as shown in Figure 37. The SOs are read by the

FileManager and parsed by the XMLParser to extract the SO components and attributes. A list of

the basic descriptions for the service objects is created which is associated with the BPMN task

shape when the user double-clicks it in the editor canvas area. Service objects are represented as

Tasks and the user can create their model via the same drag-n-drop approach. The sequence of

operation is created by connecting the notations via arrow objects and the same arrow objects are

utilized to capture information regarding the inputs and outputs of notations in the model. As

mentioned earlier, the conditional logic of the process is implemented using the BPMN gateway

notations while processor intensive tasks and remote communication tasks which are not suitable

to be executed on the remote IoT resources are represented by the Script notations. The Script

74

notation has been provided with a list of scripts from which the user can choose to manipulate or

process the data. The process of BPM creation by the user is illustrated in Figure 38.

The BPM model created by the users via the BPM Editor is stored as an XML file. This file

is the direct serialization of graphical notation and the associated information such as location on

the canvas, identifiers etc. If the user chooses to reload a previously created BPM into the Editor

for updates or changes, the file contains all the information to enable the BPM Editor to load and

re-render the same graphical model as created by the user.

Figure 39: Temperature Sensor XML Representation of BPMN

Figure 40: PMV Index XML Representation of BPMN

75

Figure 41: LR Predictor XML Representation of BPMN

Figure 42: Fuzzy Controller XML Representation of BPMN

Figure 43: Fan Actuator XML Representation of BPMN

76

Although the XML file mentioned above is very important from the perspective of editing and

updating the graphical models, it contains too much of unnecessary information from the

perspective of BPM deployment and execution. For this purpose, every time a graphical BPM is

stored by the user, another optimized version of the XML file is created with the sole purpose to

be utilized by the BPM Deployment Engine. This XML files does not contain any information

regarding the graphical rendering of the BPM and only provides information necessary for the

deployment and execution of the process represented by the BPM. The XML sample is shown in

Figure 39 representing tasks and other notations as DesignerItem objects. A DesignerItem tag in

the figure completely represents the information encapsulated by a single BPM notation. In the

figure first task represents a Task notation which encapsulates the complete information regarding

a service object. The information include the names of the input, output devices associated with

the SO, the complete URIs of the services for both the devices and the operational conditions for

the execution of the SO. The file also includes connection objects to keep track of the source and

sink items in the model and hence helps in identifying the correct sequence and execution order

of the process.

4.4. IoT Smart Space Prototype

Table 7 show development Environment for IoT Smart Space Prototype.

Figure 44 presents finalized form of the smart space prototype. This prototype has been

developed as a miniature representation of a smart space scenario where multiple sensing devices

are deployed to capture the contextual data and an actuating device is deployed to modify the

surroundings in the indoor environment. The prototype consists of the sensing and actuating

devices shown in the figure which are used by users to customize the behavior of the smart space

77

based on the contextual situations. We utilize CoAP protocol to support the data and command

transmission between the IoT proxy and IoT sensors. But for the communication between the IoT

proxy and fan actuator module, we utilize the IoTivity protocol. The following illustrates the detail

configuration of each IoT devices for the proposed smart space prototype.

Table 7: Development Environment for IoT Smart Space Prototype

IoT Smart Space

Development Environment Eclipse Luna SR2(4.4.2)

IoT Framework OCF IoTivity

Machine Learning Software Weka

Protocol

CoAP, IoTivity

Language C, C++, Java

OS Yocto Linux, Android

Hardware i3-3220 CPU @3.30GHz,

 RAM 12.0 GB

IoT Platform Intel Edison with Arduino*

 expansion board

78

Figure 44: IoT Smart Space Application Prototype Structure

Figure 45 represents the configuration of temperature sensor with Intel Edison. The

temperature sensor is implemented using Intel Edison with the Arduino breakout board. Sensing

module is responsible for reading and parsing from raw sensing data. The temperature sensor has

been used as CoAP resource (get_tmp) as part of the CoAP server. For programming the CoAP

server and defining the behavior of the CoAP resource, libcoap [56] library has been used. The

library is based on C language so we had to use the Eclipse IoT Development Kit as the IDE for

coding the CoAP device module. For interfacing the IO on Intel Edison, libmraa library is used.

Wind Speed Sensor

Temperature Sensor

Humidity Sensor

CoAP

CoAP

CoAP

Wind Data

Temperature
Data

Humidity
Data

IoT Proxy
Fan Actuator

IoTivity

Control
Command

79

Temperature Node
Yocto Linux by Intel

Library

libmraa libcoap

CoAP Resource

Sensing Module

get_tmp

Data Reader Data Parser

Figure 45: Implement Environment of Temperature Sensor

 Figure 46 represents the configuration of wind speed sensor with Intel Edison. The wind

speed sensor is implemented using Intel Edison with the Arduino breakout board. Sensing module

is responsible for reading and parsing from raw sensing data. The temperature sensor has been

used as CoAP resource (get_airflow) as part of the CoAP server. For programming the CoAP

server and defining the behavior of the CoAP resource, libcoap library has been used. The library

is based on C language so we had to use the Eclipse IoT Development Kit as the IDE for coding

the CoAP device module. For interfacing the IO on Intel Edison, libmraa library is used.

80

Wind Speed Node
Yocto Linux by Intel

Library

CoAP Resource

Sensing Module

get_airflow

Data Reader Data Parser

libmraa libcoap

Figure 46: Implement Environment of Wind Speed Sensor

Humidity Node
Yocto Linux by Intel

Library

CoAP Resource

Sensing Module

get_humidity

Data Reader Data Parser

libmraa libcoap

Figure 47: Implement Environment of Humidity Sensor

81

Figure 47 represents the configuration of humidity sensor with Intel Edison. The humidity

sensor is implemented using Intel Edison with the Arduino breakout board. Sensing module is

responsible for reading and parsing from raw sensing data. The temperature sensor has been used

as CoAP resource (get_humidity) as part of the CoAP server. For programming the CoAP server

and defining the behavior of the CoAP resource, libcoap library has been used. The library is based

on C language so we had to use the Eclipse IoT Development Kit as the IDE for coding the CoAP

device module. For interfacing the IO on Intel Edison, libmraa library is used.

Fan Node
Yocto Linux by Intel

Library

libmraa IoTivity

IoTivity Resource

Controller

set_fan

IoTivity Server Fan Controller

Figure 48: Implement Environment of Fan Actuator

Figure 48 represents the configuration of fan actuator with Intel Edison. The fan actuator is

implemented using Intel Edison with the Arduino breakout board. Sensing module is responsible

82

for reading and parsing from raw sensing data. The temperature sensor has been used as IoTivity

resource (set_fan) as part of the IoTivity server. For programming the IoTivity server and defining

the behavior of the IoTivity resource, IoTivity sdk has been used. The library is based on C++

language so we had to use the Eclipse IoT Development Kit as the IDE for coding the IoTivity

device module. For interfacing the IO on Intel Edison, libmraa library is used.

IoT Proxy Node
Android Things by Google

Library

CoAP
Californium

IoTivity

CoAP Resource

Proxy

Android
Things

temp sensor

CoAP Client IoTivity Client

hum sensor

wind sensor

fan actuator

Logic Module

PMV
Calculater

PMV
Predictor

Fuzzy
Controller

Comm Parser Comm Receiver

Figure 49: Implement Environment of IoT Proxy

Figure 49 represents the configuration of IoT proxy with Intel Edison. The IoT proxy is

implemented using Intel Edison with the Arduino breakout board. Android Things sdk has been

83

flashed into the Intel Edison to provide Android based environment. Logic module supports three

services (PMV calculation, PMV prediction and fuzzy control) based on machine learning

algorithms. Comm receiver is responsible for receiving the command from the virtual domain and

the comm parser extracts the service process from the command. These IoT sensor and actuators

have been used as CoAP resource as part of the CoAP server. For programming the CoAP server

and defining the behavior of the CoAP resource, Californium library has been used. The library is

based on Java language so that it can be directly imported in the Android environment. For

programming the IoTivity server and defining the behavior of the IoTivity resource, IoTivity sdk

has been used.

Figure 50: PMV Equation Parameter Definition

84

4.5. PMV Calculation

Figure 50 represents the source code of the PMV equation parameter definition in Java. The

air temperature, mean radiant temperature, relative air velocity, relative humidity, metabolic rate,

clothing and external work parameter are defined as ta, tr, vel, rh, met, clo and wme in the

beginning of the function. Then the thermal insulation value of the clothing is calculated according

to the metabolic rate and external work values. Clothing factor value varies on the basis of clothing

insulation. Heat transfer coefficient is calculated by forced convection.

Figure 51: PMV Equation Implementation

Figure 51 illustrates the source code of the PMV equation implementation in Java. All

parameters used in the PMV equation are calculated according to the following figure. Heat

85

loss difference value is calculated by air pressure and human body internal heat production.

Heat loss by sweating varies on the basis of human body internal heat production. Then latent

respiration, dry respiration, radiation heat loss and convection heat loss are calculated in

sequence. These parameters are used in the PMV equation to get the PMV index value.

Figure 52 represents the execution result of PMV index calculation. T, vel and rh represent

three parameters (temperature, wind speed and humidity). And then the IoT Proxy invokes the

function in the previous figure to get the PMV index value.

Figure 52: PMV Execution Result

4.6. PMV Prediction based on Linear Regression

Figure 53 represents the training dataset for PMV index prediction in the proposed IoT

prototype. An ARFF (Attribute-Relation File Format) file is an ASCII text file that describes a list

of instances sharing a set of attributes. The first section of the ARFF file is the Header information

which contains the name of the relation (indoor_pmv), a list of the attributes (the columns in the

data), and their types. The @RELATION, @ATTRIBUTE and @DATA declarations are case

insensitive. The relation name is defined as the first line in the ARFF file. The format is @relation

<relation-name> where <relation-name> is a string. Attribute declarations take the form of an

ordered sequence of @attribute statements. Each attribute in the data set has its own @attribute

statement which uniquely defines the name of that attribute and its data type. The order the

attributes are declared indicates the column position in the data section of the file. For example, if

an attribute is the third one declared then Weka expects that all that attributes values will be found

86

in the third comma delimited column. The format for the @attribute statement is: @attribute

<attribute-name> <datatype> where the <attribute-name> must adhere to the constraints specified

in the above section on the @relation declaration. The <datatype> can be any of the four types

supported by Weka:

 numeric

 integer is treated as numeric

 real is treated as numeric

 <nominal-specification>

 string

 date [<date-format>]

 relational for multi-instance data (for future use)

where <nominal-specification> and <date-format> are defined below. The keywords numeric,

real, integer, string and date are case insensitive. The @data declaration is a single line denoting

the start of the data segment in the file. The format is: @data. Each instance is represented on a

single line, with carriage returns denoting the end of the instance. A percent sign (%) introduces a

comment, which continues to the end of the line. Attribute values for each instance can be

delimited by commas or tabs. A comma/tab may be followed by zero or more spaces. Attribute

values must appear in the order in which they were declared in the header section (i.e., the data

corresponding to the nth @attribute declaration is always the nth field of the attribute). The

training dataset used in this prototype has one hundred lines, containing three attribute features

(temperature, humidity and wind speed values) and one class label (pmv).

87

Figure 53: Snapshot of Training Dataset for PMV Index Prediction

Figure 54 presents the source code of linear regression based PMV index prediction process

using Weka. To load data into Weka, we have to put it into a format that will be understood.

Weka’s preferred method for loading data is in the ARFF. The ARFF file that we used is

represented in Figure 48. After loading the training dataset, we can simply invoke the linear

regression class which is encapsulated by Weka. We build the linear regression module with the

training dataset and then go to the next step. To predict the PMV index value, we have to load the

test dataset which contains the current environmental data. Weka supports classify instance

function which returns the numeric value of the class to predict.

88

Figure 54: Snapshot of Source Code for PMV Index Prediction Process using Weka

Figure 55 illustrates the prediction execution result of PMV index in the IoT Proxy. We use

current indoor environment conditions to build test dataset that is used to predict the PMV index

value.

Figure 55: PMV Index Prediction Execution Result

4.7. Control based on Fuzzy Logic with PMV

To implement the fuzzy inference system in the IoT prototype, we utilized the jFuzzyLogic

library [57] implementing Fuzzy Control language (FCL) which standardizes programming fuzzy

logic systems. In our fuzzy inference system, the input variables are pmv index and its variation

89

(deltapmv). Variables are defined in the VAR_INPUT and VAR_OUTPUT sections. Fuzzy sets

are defined in FUZZIFY blocks for input variables and DEFUZZIFY blocks for output variables.

One FUZZYIFY block is used for each input variable. Each TERM line within a FUZZIFY block

defines a linguistic term and its corresponding membership function. Output variables define their

membership functions within DEFUZZIFY blocks. Linguistic terms and membership functions

are defined using the TERM keyword as previously described for input variables. The

statement ’METHOD : COG’ indicates that we are using ’Center of gravity’.

Figure 56: Fuzzy Controller Variable Definitions

90

Fuzzy rules are defined in RULEBLOCK statements. Each entry in the RB was converted to

a single FCL rule. Within each rule, the antecedent (i.e. the IF part) is composed of the input

variables connected by ‘AND’ operators. Since there is more than one output variable, we can

specify multiple consequents (i.e. THEN part) separated by semicolons.

Figure 57: Fuzzy Controller Fuzzy Rule Block

Figure 58 presents the execution result of the fuzzy controller. PMV index and PMV variation

values are used as input parameters in the fuzzy controller. And then according to the defined

fuzzy rules, the fuzzy controller computes the output value (fan speed).

91

Figure 58: Fuzzy Controller Execution Result

92

5. Experiment and Evaluation

Figure 59 represents the experiment scenario of the proposed smart indoor space prototype.

For the purpose of the smart space prototype demonstration, the temperature sensor, humidity

sensor, wind sensor, proxy and the fan actuator are implemented as IoT devices. The physical

layer of the architecture represents these components as separate physical devices. The

information of the implemented device components is provided to the Virtual Object Layer which

converts the information into virtual objects. The Service Logic Layer utilizes the virtual objects

generated from the Virtual Object Layer and the logic objects from the service object repository

to combine logic service objects. The Business Process Layer acquires the service object

definitions from the SO repository at Service Layer, parses the XML representation of the service

objects to extract information and then represent the services as BPMN task notations. The created

BPM is then deployed to the proxy and control the IoT devices on the basis of the operations.

Temperature Humidity Proxy Wind Fan

VO1 VO2 VO3 VO4 VO5

SO1 SO2 SO3 SO4

BPM

LO1 LO3LO2

XML

Figure 59: Experiment Scenario of the Smart Indoor Space Prototype

93

Figure 60 presents finalized form of the smart space prototype. This prototype has been

developed as a miniature representation of a smart space scenario where multiple sensing devices

are deployed to capture the contextual data and an actuating device is deployed to modify the

surroundings in the indoor environment. The prototype consists of the following sensing and

actuating devices which are used by users to customize the behavior of the smart space based on

the contextual situations.

Fan

Temperature Sensor Humidity Sensor

Wind Sensor

IoT Proxy

Figure 60: Intel Edison based Finalized Smart Indoor Space Prototype for Experiment

94

Figure 61 represents the execution result of BPM process in the IoT Proxy. The BPM file

shown in the previous section that is sent from the BPM Editor. These xml documents can be

received and executed by the IoT Proxy. The file is parsed to extract all the executable entities as

represented by the BPM notations. Based on the predefined connection between the notations, the

executable entities are sorted and sequenced so that the final execution of the process is in synch

with the original graphical BPM process created by the user. The task entities are sorted and each

entity is executed. For task related to remote IoT resources, the IoT Proxy then requests the CoAP

resource of corresponding the IoT devices. Once the CoAP devices receives the request from the

IoT proxy, the response based on the complete execution is then sent back to the IoT Proxy.

Figure 61: BPM Execution Result in IoT Proxy

This figure presents the PMV index prediction process in the IoT proxy. After getting sensing

values from IoT sensors, the IoT proxy calls the function to store sensing values in the ARFF

format that is used for testing. Then the IoT proxy loads the pre-defined training dataset and build

linear regression model according to the features information.

95

Figure 62: Sensing Response Information in IoT Proxy

96

Figure 63: Built Linear Regression Model for PMV Index Prediction in IoT Proxy

The predicted PMV index value and the PMV variation values are used as input parameters

in Fuzzy Inference System. Then the IoT proxy initializes the Fuzzy Inference System and the

fuzzy sets are shown in the following figure.

97

Figure 64: Launch Fuzzy Inference System in IoT Proxy

Fan speed value is the output of the Fuzzy Inference System. And then the fan speed value is

then converted to duty which is used as a query value in the control request.

Figure 65: Fuzzy Inference System Output in IoT Proxy

The proposed IoT smart indoor space prototype has been tested in a working space (office) in

the south of Korea. Table 8 records the fan speed variation at 2:00 pm and it continues until 1:00

98

am through the day in the summer situation. Table depicts the experimental test performed to

verify if the fan actuator operates correctly according to the environment situation. Fan speed

values vary on basis of the predicted PMV index and PMV variation values. The fan speed

increases with the temperature increasing and decreases as the temperature decreasing. According

to the table, the air temperature values are the most important factor to affect the PMV index. The

fuzzy inference system computes the speed to drive the fan coil according to the defined fuzzy

rules shown in Figure 53.

Table 8: Smart indoor space prototype performance

Time Temperature

(℃)

Humidity

(%)

Wind Speed

(m/s)

PMV Predicted

PMV

PMV

Variation

Fan

Speed

2:00 pm 28.71 40.94 0 0.8 0.86 0 0.93

3:00 pm 22.14 37.5 0 -0.09 0.11 -0.75 0.49

4:00 pm 25.62 40.24 0 0.61 0.64 0.53 0.64

5:00 pm 20.91 36.75 0 -0.02 -0.03 -0.67 0.22

6:00 pm 25.8 40.9 1 0.53 0.52 0.55 0.65

7:00 pm 23.03 38.92 1 0.19 0.21 -0.31 0.64

8:00 pm 22.32 40.77 1 0.12 0.13 -0.08 0.60

9:00 pm 27.07 43.5 1 0.66 0.67 0.54 0.65

10:00 pm 25 44.34 0 0.42 0.44 -0.37 0.64

11:00 pm 22.75 36.79 0 0.17 0.18 -0.26 0.58

12:00 pm 20.94 34.34 0 -0.02 -0.03 -0.21 0.22

1:00 am 18.72 36.5 0 -0.26 -0.28 -0.25 0.07

As shown in the Figure 66, we measured the whole prototype system round trip time by the

following equation:

 (13)

Where Rt the round trip time and {t=1, …, n}is the time slots between the temperature sensor

and the proxy, the humidity sensor and the proxy, the wind sensor and the proxy, the processing

n

i

nt t
n

R
0

1

99

time in the proxy, the proxy and the fan actuator. According to the Figure 67, we have recorded

the round trip time of the whole prototype five times. And the average round trip time is 364.4ms

that indicates CoAP and IoTivity protocol makes high performance in the transmission between

IoT devices.

Temperature

Humidity

Wind Speed

Fan

Proxy

PMV Pred Fuzzy

Proxy Process Time Fan Control TimeSensor Collection
TIme

Temperature,
Humidity,

Wind Speed

Figure 66: Smart Indoor Space Prototype Evaluation Structure

100

Figure 67: IoT Smart Indoor Space Prototype Round Trip Time

86 91

64 60
75

64
81

55
70

8081

106

79
94

81

54
65

77 72
88

50
60

41

83

65

0

20

40

60

80

100

120

1 2 3 4 5

M
S

IoT Smart Indoor Space Prototype Roung
Trip Time

Temperature Collection Time Humidity Collection Time

Wind Collection Time Proxy Process Time

Fan Control TIme

101

6. Conclusion

This paper presented an enhanced IoT cooperation architecture based on Business Process

Modeling approach. The presented system utilizes the prevalent ideas of object virtualization and

service provisioning and represents them as a DIY interface based on a Business Process Modeling

(BPM). BPM has been at the core of software requirement analysis and specification processes. It

fills the communication gap between the clients and developers by providing a standardized set of

graphical notation called as the Business Process Modeling Notations (BPMN). BPMN is easy to

learn and can be globally interpreted into the same description of a process. Although there are

efforts to extend BPMN to incorporate IoT concepts but we believe that a standardized modeling

language such as BPMN can provide better DIY environment for IoT application development. It

is specifically important from the IoT point of view because IoT is an emerging field and mass

involvement has been reported to be very necessary for the successful realization of IoT vision.

The paper visualizes the presented idea in the form of a layered architecture which consists of

the Physical Cooperation Network Layer, Virtual Object Layer, Service Logic Layer, Business

Process Layer and Application Layer. A detailed description of the layered architecture and design

detail of the layers has been presented in this document. In order to demonstrate the applicability

and usability of the proposed architecture in general IoT scenarios, an IoT smart space prototype

has been implemented through the proposed architecture. Prototype implementations based on

multiple CoAP devices and intelligent services (prediction and automatic control) have been

developed to demonstrate the feasibility of the proposed system.

102

References

1. Internet of things, https://en.wikipedia.org/wiki/Internet_of_things.

2. “IoT Applications With Examples”, http://internetofthingswiki.com/iot-applications-

examples/541/.

3. Gartner, "Predicts 2015: The Internet of Things", December 2014.

4. Mateo P. Internet of Things Needs Standards in Order to Make Headway. In L'Atelier, the

BNP Paribas Group’s, 2013. http://www.atelier.net/en/trends/articles/internet-things-

needs-standards-order-make-headway_425738

5. Sundmaeker H., Guillemin P., Woelfflé S. Vision and Challenges for Realising the

Internet of Things. In CERP-IoT Cluster of European Research Projects of the Internet of

Things, European Commission (2009), 12-13.

6. Rumpel A., Meissner K. Requirements-Driven Quality Modeling and Evaluation in Web

Mashups In Quality of Information and Communications Technology (QUATIC), 2012,

Eighth International Conference on the, IEEE Press (2012), 319-322.

7. L. Richardson and S. Ruby. RESTful Web Services. O’Reilly Media, Inc., 2007.

8. D. Guinard, V. Trifa, T. Pham, and O. Liechti, "Towards physical mash ups in the web of

things, " in Proceedings of the 6th international conference on Networked sensing systems,

Pittsburgh, Pennsylvani, USA, 2009, pp. 196-199.

9. D. Zhiquan, Y. Nan, C. Bo, C. Junliang, "Data Mashup in the Internet of Things", Proc.

International Conference on Computer Science and Network Technology (ICCSNT), pp.

948-952, December, 2011.

10. GeoThings, http://geothings.io/.

11. Fitbit, http://www.fitbit.com/.

12. openHAB, http://www.openhab.org/.

13. M. Blackstock, R. Lea, "IoT mashups with the WoTKit", Internet of Things (IOT) 2012

3rd International Conference on the IEEE, pp. 159-166, 2012.

14. Kaa, https://www.kaaproject.org/.

15. Predix, https://www.predix.io/.

16. Carriots, https://www.carriots.com/.

17. W. S., “Business process modeling improves administrative control,” Automation, pp.

44–50, 1967.

18. A. Aluva, “Why DIY Concept Has Started Trending Among Indian Startups - Inc42

Media,” 2015. [Online]. Available: https://inc42.com/resources/startups-adopting-do-it-

yourself-models-diy-concept-trending-among-indian-startups/. [Accessed: 24-May-

2016].

19. R. Kleinfeld, S. Steglich, L. Radziwonowicz, and C. Doukas, “Glue.Things: A Mashup

Platform for Wiring the Internet of Things with the Internet of Services,” Proc. 5th Int.

Work. Web Things, pp. 16–21, 2014.

20. Roberto, “Introduction to Node RED | Sensetecnic,” 2015. [Online]. Available:

http://developers.sensetecnic.com/article/introduction-to-node-red/. [Accessed: 19-Apr-

2016].

21. S. Heo, S. Woo, J. Im, and D. Kim, “IoT-MAP : IoT Mashup Application Platform for the

Flexible IoT Ecosystem,” in 5th International Conference on the Internet of Things (IoT),

2015, pp. 163–170.

22. C. Richardson, “Overview of POJO programming,” 2006.

23. F. Pramudianto, C. A. Kamienski, E. Souto, F. Borelli, and L. L. Gomes, “IoTLink : An

Internet of Things Prototyping Toolkit,” in 11th International Conference on Ubiquitous

Intelligence & Computing, 2014, pp. 1–9.

http://geothings.io/
https://www.kaaproject.org/
https://www.predix.io/

103

24. H. Nguyen, M. Quoc, and M. Serrano, “Super Stream Collider–Linked Stream Mashups

for Everyone,” in Semantic Web Challenge co-located with ISWC2012, 2012.

25. D. Carlson, M. Mögerle, M. Pagel, S. Verma, and D. S. Rosenblum, “Ambient Flow: A

visual approach for orchestrating smart devices in the internet of things,” in 5th

International Conference on the Internet of Things (IoT), 2015.

26. N. Kefalakis, J. Soldatos, A. Anagnostopoulos, and P. Dimitropoulos, “A Visual

Paradigm for IoT Solutions Development,” Lect. Notes Comput. Sci. (including Subser.

Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9001, pp. 169–182, 2015.

27. M. M. Burnett and B. a. Myers, “Future of end-user software engineering: beyond the

silos,” Proc. Futur. Softw. Eng. - FOSE 2014, no. April 2016, pp. 201–211, 2014.

28. Hyemin Lee, Dongig Sin, Eunsoo Park, Injung Hwang, Gyeonghwam Hong and Dongkun

Shin, “Open software platform for companion IoT devices”, 2017 IEEE International

Conference on Consumer Electronics (ICCE).

29. IoTivity, www.iotivit.org.

30. oneM2M-Standards for M2M and the Internet of Things, www.onem2m.org.

31. J. Swetina, "Toward a Standardized Common M2M Service Layer Platform: Introduction

to oneM2M", IEEE Wireless Commun., vol. 21, no. 3, pp. 20-26, June 2014.

32. Cengiz Gezer, Erhan Taskin, "An overview of oneM2M standard", Signal Processing and

Communication Application Conference (SIU), 2016 24th.

33. OpenHAB, “openHAB - empowering the smart home,” 2013. [Online].Available:

https://github.com/openhab/openhab.

34. OpenIotOrg, https://github.com/OpenIotOrg/openiot.

35. J. Hosek, P. Masek, D. Kovac, M. Ries, F. Kröpfl, "Universal Smart Energy

Communication Platform", Proceedings of 1st International Conference on Intelligent

Green Building and Smart Grid (IGBSG 2014), pp. 134-137, 2014.

36. Arduino, http://www.arduino.cc/.

37. Raspberry Pi, http://www.raspberrypi.org/.

38. Intel Edison, https://en.wikipedia.org/wiki/Intel_Edison.

39. M. Kovatsch, “CoAP for the Web of Things: From Tiny Resource-constrained Devices to

the Web Browser,” in 4th International Workshop on the Web of Things (WoT 2013),

2013.

40. M. Butcher, “REST Without JSON: The Future of IoT Protocols - DZone IoT,” 2015.

[Online]. Available: https://dzone.com/articles/json-http-and-the-future-of-iot-protocols.

[Accessed: 23-May-2016].

41. Tensorflow, https://www.tensorflow.org/.

42. WEKA, https://weka.wikispaces.com/.

43. DEEPLEARNING4J, https://deeplearning4j.org/index.html.

44. Lasagne, https://github.com/Lasagne/Lasagne.

45. Keras, https://keras.io/.

46. Muhammad.Sohail. Khan, “Enhanced IoT Composition Architecture based on DIY

Business Process Modeling Approach”.

47. ASHRAE. 2010. ANSI/ASHRAE Standard 55-2010. Atlanta: American Society of

Heating, Refrigerating and Air-Conditioning Engineers, Inc.

48. Fanger, P.O. 1970. ¬Analysis and Applications in Environmental Engineering. McGraw-

Hill Book Company, New York.

49. L. Ma, H. Zhu, G. Nallamothu, B. Ryu, and Z. Zhang, "Impact of linear regression on

time synchronization accuracy and energy consumption for Wireless Sensor Networks,"

in IEEE Military Communications Conference (MILCOM), 2008.

50. A. Wemhoff, "Calibration of hvac equipment pid coefficients for energy conservation,"

Energy and Buildings, vol. 45, no. 0, pp. 60 - 66,2012.

51. J. hong Yang and X. yan Bi, "High-precision temperature control system based on pid

104

algorithm," in Computer Application and System Modeling (ICCASM), 2010

International Conference on, vol. 12, Oct 2010.

52. A. Giantomassi, F. Ferracuti, S. larlori, S. Longhi, A. Fonti, and G. Comodi, "Kernel

canonical variate analysis based management system for monitoring and diagnosing smar

homes;' 2014, pp. 1432-1439.

53. S. Murakami, S. Kato, and T. Kim, "Coupled simulation of convicton, radiation, and hvac

control for attaining a given pmv value," Building and Environment, vol. 36, no. 6, pp.

701 - 709, 2001, building and Environmental Performance Simulation:Current State and

Future Issues.

54. J. Cigler, S. Privara, Z. Vana, E. Zacekova, and L. Ferkl, "Optimization of predicted mean

vote index within model predictive control framework: Computationally tractable

solution," Energy and Buildings, vol. 52, no. 0, pp. 39 - 49, 2012.

55. --, "Fuzzy logic home energy consumption modeling for residential photovoltaic plant

sizing in the new italian scenario," Energy, vol. 74, no. 0, pp. 359 - 367, 2014.

56. libcoap, https://github.com/obgm/libcoap.

57. jFuzzyLogic, http://jfuzzylogic.sourceforge.net/html/index.html.

	Abstract
	1. Introduction
	2. Related Work
	2.1 IoT Composition Platform
	2.2 IoT Standards
	2.3 IoT Open Source Hardware
	2.4 IoT Protocol
	2.5 Open Source Machine Learning Software

	3. Proposed IoT Cooperation Architecture and Composition System
	3.1 Physical Cooperation Network Layer
	3.2 Virtual Object Layer
	3.3 Service Logic Layer
	3.4 Business Process Layer
	3.5 Application Layer
	3.6 PMV (Predicted Mean Vote)
	3.7 PMV Prediction based on Linear Regression Algorithm
	3.8 Fan Control based on Fuzzy Logic with PMV

	4. Implementation
	4.1 Virtual Device Manager
	4.2 Service Composition Manager
	4.3 BPM Editor
	4.4 IoT Smart Space Prototype
	4.5 PMV Calculation
	4.6 PMV Prediction based on Linear Regression
	4.7 Control based on Fuzzy Logic with PMV

	5. Experiment and Evaluation
	6. Conclusion
	References

<startpage>15
Abstract 1
1. Introduction 3
2. Related Work 8
 2.1 IoT Composition Platform 8
 2.2 IoT Standards 13
 2.3 IoT Open Source Hardware 17
 2.4 IoT Protocol 20
 2.5 Open Source Machine Learning Software 23
3. Proposed IoT Cooperation Architecture and Composition System 26
 3.1 Physical Cooperation Network Layer 30
 3.2 Virtual Object Layer 34
 3.3 Service Logic Layer 36
 3.4 Business Process Layer 40
 3.5 Application Layer 46
 3.6 PMV (Predicted Mean Vote) 48
 3.7 PMV Prediction based on Linear Regression Algorithm 51
 3.8 Fan Control based on Fuzzy Logic with PMV 54
4. Implementation 59
 4.1 Virtual Device Manager 59
 4.2 Service Composition Manager 65
 4.3 BPM Editor 70
 4.4 IoT Smart Space Prototype 76
 4.5 PMV Calculation 84
 4.6 PMV Prediction based on Linear Regression 85
 4.7 Control based on Fuzzy Logic with PMV 88
5. Experiment and Evaluation 92
6. Conclusion 101
References 102
</body>

