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ABSTRACT 

 

  Skin is exposed to harmful environmental such as air pollution which including 

various types of particulate matters (PMs). These atmospheric PMs have harmful 

effect on human through increase of the reactive oxygen species (ROS). It has been 

reported that ROS induced skin aging via generation of matrix metalloproteinases 

(MMPs) which causes skin aging through degradation of collagen. This study 

investigated the effect of fermented fish oil (FFO), which derived from mackerel, in 

PM2.5 (particulate with a dimeter of < 2.5 µm)-induced skin aging in human 

keratinocyte. FFO inhibited PM2.5-induced intracellular ROS and MMPs including 

MMP-1, MMP-2, and MMP-9. In addition, FFO significantly abrogated the 

intracellular Ca
2+

 level in PM2.5-treated cells. Furthermore, FFO blocks PM2.5-

induced MAPKs/AP-1 pathway. In conclusion, FFO has anti-aging effect on PM2.5-

induced skin aging on human keratinocyte. 

 

 

Keyword: Particulate matters 2.5, Matrix metalloproteinases, Fermented fish oil, 

Oxidative stress, Skin aging 
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1. Introduction 

Since reactive oxygen species (ROS) have unpaired electrons and unstable bounds, it is 

able to lead cellular damage (de Jager et al. 2017; Ryu et al. 2018) and to regulate 

transcription factors such as activator protein 1 (AP-1), and nuclear factor kB (NF-kB) 

(Ranneh et al. 2017). The cellular ROS can be accumulated by exogenous sources like air 

pollutions (Ranneh et al. 2017). 

  Skin is the largest organ in body and acts as the first defense barrier against harmful 

stimuli such as ultraviolet (UV) and air pollution including particulate matters (PMs). PMs 

can be classified as ultrafine PM (particulate with a dimeter of <0.1 µm, PM0.1), fine PM 

(particulate with a dimeter of <2.5 µm, PM2.5), and coarse PM (particulate with a dimeter of 

<10 µm, PM10) which depending on the particle size (Kim et al. 2015). PMs lead to the 

development of various skin diseases such as skin aging, alopecia and skin cancer through 

inducing oxidative stress (Kim et al. 2016). In addition, PMs induced oxidative stress via 

production of ROS and increase matrix metalloproteinases (MMPs) (Kim et al. 2016; Seok 

et al. 2018). MMPs including MMP-1, MMP-2, and MMP-9 caused skin aging through the 

degradation of collagen (Chaiprasongsuk et al. 2017; Kim et al. 2017). 

  ROS generations have been reported to affect skin aging by increasing the expression of 

MMP-1 in keratinocyte (Leiros et al. 2017). Several studies were reported that UVB-induced 

ROS caused skin photoaging via generation of MMP-1 in human keratinocytes and dermal 

fibroblasts (Kim et al. 2018; Xuan et al. 2017). Therefore, it is important to find an effective 

antioxidant to prevent skin aging.  

  Oxidative stress stimulates mitogen-activated protein kinases (MAPKs) signaling pathway, 

which affect the regulation of transcription factor AP-1 activity (Pittayapruek et al. 2016). 
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Activation (phosphorylation) c-Jun and c-Fos can be comprised of homodimer or 

heterodimer to bind to AP-1 binding sites in the promoter region of target genes to promote 

gene transcription (Lu et al. 2016) such as MMPs transcription (Kim et al. 2017). 

Previous study was reported that fermented fish oil (FFO) has antioxidant effects and 

protective effect against UVB-induced oxidative damage (Park et al. 2018). But the effect of 

FFO in PM2.5-induced skin aging is poorly understood. Therefore, this study demonstrates 

the effect of FFO against PM2.5-induced skin aging.  
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2. Materials and methods 

2-1. Cell culture and treatment 

The HaCaT human keratinocyte (CLS Cell Lines Service GmbH, Eppelheim, Germany) 

were cultured in DMEM medium (Gibco, Life Technologies Co., Grand Island, NY, USA) 

supplemented with 10% fetal bovine serum and antibiotics (100 units/mL penicillin, 100 

μg/mL streptomycin and 0.25 µg/mL amphotericin B) (Gibco, Life Technologies Co.) at 

37°C in an incubator with a humidified atmosphere of 5% CO2. Cell were treated to 50 

μg/mL of diesel particulate matter NIST 1650b (PM2.5) (Sigma-Aldrich Chemical Company, 

St. Louis, MO, USA) and 20 μg/mL of FFO. Preparation of PM2.5 was described previous 

study (Piao et al. 2018) and preparation of FFO was described previous study (Park et al. 

2018).  

2-2. Detection of intracellular ROS 

To detect intracellular ROS in HaCaT cells, cells were seeded in plates at a density of 

1.0×105 cells/well, cultured for 16 h, and treated 20 μg/mL of FFO, 50 μg/mL of PM2.5. After 

30 min later, 50 μM 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA, Molecular Proves, 

Eugene, OR, USA) solution was added. DCF fluorescence was measured using a BD 

LSRFortessa flow cytometry (PerkinElmer, Waltham, MA, USA) and images were collected 

by using a FV1200 laser scanning confocal microscope (Olympus, Tokyo, Japan). 

2-3. Detection of β-galactosidase activity  

To detect the cell senescence, cells were seeded in plates at a density of 1.0×105 cells/ml. 

After 16 h of incubation period at 37C, cells were treated 20 μg/mL of FFO, 50 μg/mL of 

PM2.5. After 24 h later, 2 μM SPiDER-βGal solution (Dojindo Molecular Technologies, Inc., 

Rockville, MD, USA) was added. After 15 min at 37C, Cells were mounted in mounting 
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medium containing DAPI to label nuclei. SPiDER-βGal fluorescence was measured by using 

a BD LSRFortessa flow cytometry and images were collected using a FV1200 laser scanning 

confocal microscope (Olympus).   

2-4. MMP-1 activity  

The MMP-1 activity was measured by using the Fluorokine®  E human active MMP-1 

fluorescent assay kit (R&D Systems Inc., Minneapolis, MN, USA). HaCaT cells were seeded 

on a 60 mm culture dish at 1.0×105 cells/mL. After 16 h of incubation period at 37C, cells 

were treated with 20 μg/mL of FFO and after 1 h, cell were treated with 50 μg/mL of PM2.5. 

Then MMP-1 activity was assessed according to the manufacture’s instruction. Fluorescence 

was measured by using Spectra Max i3x microplate reader (Molecular devices, San Jose, CA, 

USA). 

2-5. Reverse transcription –PCR (RT-PCR)  

Cells were seeded at 1.5×105 cells/mL and after 16 h later cell were treated with 20 μg/mL 

of FFO, 50 μg/mL of PM2.5. After 24 h, we isolated total RNA from cells using the easy-

BLUE™ total RNA extraction kit (iNtRON Biotechnology Inc., Seongnamsi, Korea). And 

then the cDNA was amplified by using reverse transcription reaction buffer, primers, dNTPs, 

and Taq DNA polymerase in a final volume of 20 μL. The amplified products were mixed 

with blue/orange 6X loading dye, resolved by electrophoresis on a 1% agarose gel which 

stained with RedSafe™ nucleic acid staining solution (iNtRON Biotechnology Inc., 

Seongnamsi, Korea), and photographed under UV light using Image Quant™ TL analysis 

software (Amersham Biosciences, Uppsala, Sweden). The PCR conditions were as followers: 

initial denaturation at 94°C for 5 min and then followed by 30 cycles of 94°C for 30 s, 55°C 

for 30 s, and 72°C for 1 min. The primers were used in this study: human MMP-1, forward 

(5'-GGAGGAAATCTTGCTCAT-3′) and reverse (5′-CTCAGAAAGAGCAGCATC-3′); 
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human GAPDH, forward (5′-TCAAGTGGGGCGATGCTGGC-3′) and reverse (5′-

TGCCAGCCCCAGCGTCAAAG-3′).   

2-6. Western blot analysis 

The protein lysates (30 μg per lane) were electrophoresed on 12% SDS-polyacrylamide 

gels. Then transferred to a nitrocellulose membrane which was incubated with the primary 

antibodies and incubated with HRP-conjugated secondary antibodies (Invitrogen, Carlsbad, 

CA, USA). Next, membranes were exposed to a Western blotting detection kit (GE 

Healthcare Life Sciences, Little Chalfont, UK) for to detect the protein bands and then 

exposed to X-ray film. Primary antibodies were used in this study: MMP-1 (Cusabio 

Tecnology LLC., Houston, TX, USA), MMP-2 (Abcam, Cambridge, UK), MMP-9 (Abcam), 

phospho-c-Jun (Cell Signaling Technology, Danvers, MA, USA), c-Fos (Cell Signaling 

Technology), phospho-SEK (Cell Signaling Technology), phospho-MEK (Cell signaling 

Technology), phospho-ERK (Santa Cruz Biotechnology, Santa Cruz, CA, USA), phospho-

JNK (Cell Signaling Technology), Actin (Sigma-Aldrich Chemical Company).  

2-7. Measurement of Ca
2+

 level 

To detect Ca2+ level, cells were seeded in plates at a density of 1.0×105 cells/well, cultured 

for 16 h, and treated 20 μg/mL of FFO, 50 μg/mL of PM2.5. After 24 h later, 5 μM Fluo-4-

AM (Molocular Probes, Eugene, OR, USA) solution was added. Fluo-4-AM fluorescence 

was measured by using a BD LSRFortessa flow cytometry and images were collected by 

using a FV1200 laser scanning confocal microscope (Olympus).  

2-8. Chromatin immunoprecipitation (ChIP) assay 

The ChIP assay was performed by using the SimpleChIP™ enzymatic chromatin IP kit 
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(Cell Signaling Technology). HaCaT cells were seeded at 1.5×105 cells/mL and after 16 h, 

cells were treated with 20 μg/mL of FFO, 50 μg/mL of PM2.5. All processes were performed 

according to the instructions. The following antibody and primers were used in this study: c-

Jun antibody (Invitrogen), MMP-1 gene promoter (-67 to +94 of the MMP-1 gene sequence 

from the transcription starting site, Bionics) were designed as sense 5′-

CCTCTTGCTGCTCCAATATC-3′ and antisense 5′-TCTGCTAGGAGTCACCATTTC-3′. 

The PCR products were separated on 1% agarose gel, DNA bands were photographed under 

UV light using Image Quant™ TL analysis software (Amersham Biosciences). 

2-9. Statistical analysis 

All data were performed in triplicate and all values are expressed as the mean ± standard 

error of the means. This study used Tukey’s test analysis to determine the statistical 

significance of differences between means. p < 0.05 were considered statistically significant. 
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3. Results 

3-1. Effect of FFO on PM2.5-induced intracellular ROS 

Because ROS has been reported to affect skin aging via generation of MMPs (Leiros et al. 

2017), this study measured generation of intracellular ROS by DCF-DA fluorescence dye. As 

shown by flow cytometry data, PM2.5-treated cell induced ROS and pretreatment of FFO 

reduced PM2.5-indeuced ROS in HaCaT cell and which was confirmed by using confocal 

microscopy (Figure 1A and B).  

 

Figure 1. Scavenging effect of FFO on PM2.5-induced intracellular ROS. Intracellular ROS 

was detected by (A) flow cytometry and (B) confocal microscopy after DCF-DA staining. *p 



８ 

 

< 0.05, #p < 0.05 compared to untreated cells and PM2.5-treated cells, respectively.  

 

3-2. PM2.5-induced keratinocyte senescence 

Next, this study measured β-galactosidase activity for to detect of HaCaT cell senescence 

using flow cytometry and confocal microscopy after SPiDER-βGal staining. PM2.5-treated 

cells increased β-galactosidase activity in the cytosol and FFO-treated cells decreased PM2.5-

induced β-galactosidase activity (Figure 2A and B).  

 

Figure 2. PM2.5-induced keratinocyte senescence. (A) The β-galactosidase activity was 

measured by flow cytometry and (B) confocal microscopy after SPiDER-βGal staining. *p < 
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0.05, #p < 0.05 compared to untreated cells and PM2.5-treated cells, respectively. 

3-3. Effect of FFO on PM2.5-induced MMP-1 activation and MMPs expression   

Treatment of PM2.5 significantly increased the activation of MMP-1 in after 6, 12, 24 h 

(Figure 3A) and FFO pretreatment decreased the PM2.5-induced activation of MMP-1 

(Figure 3B). Expression of MMP-1 mRNA and protein levels are also increased in PM2.5-

treatment cells and decreased in FFO-pretreatment cells (Figure 3C and D). Since MMP-2 

and MMP-9 are also reported to be involved in skin aging through degradation of collage, I 

analyzed the expression of MMP-2 and MMP-9 protein levels. MMP-2 and MMP-9 protein 

level also increased by PM2.5 treatment and decreased by FFO pretreatment (Figure 3E).  
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Figure 3. Effect of FFO on PM2.5-induced MMP-1 activation and MMPs expression. (A) 

The MMP-1 activity of PM2.5-treated cells at the indicated times and (B) The MMP-1 

activity of FFO and PM2.5 treated cells was determined using the human active MMP-1 

fluorescent assay kit. *p < 0.05, #p < 0.05 compared to untreated cells and PM2.5-treated cells, 

respectively. (C) Expression level of MMP-1 was analyzed by western blot. Actin was used 

to loading control. *p < 0.05, compared to untreated cells. (D) The mRNA level of MMP-1 

and protein level of MMP-1 were analyzed by RT-PCR and western blot, respectively. 

GAPDH and actin were used to loading control. *p < 0.05, #p < 0.05 compared to untreated 

cells and PM2.5-treated cells, respectively.  (E) Expression level of MMP-2 and MMP-9 

were analyzed by western blot. Actin was used to loading control. *p < 0.05, #p < 0.05 

compared to untreated cells and PM2.5-treated cells, respectively. 

3-4. Effect of FFO on PM2.5-induced MAPKs and intracellular Ca
2+

 level  

MAPKs, which enhance expression of MMP-1, are activated by an increase in the 

intracellular Ca2+ level (Liu et al. 2010). As shown western blot data, PM2.5 treatment 

induced the activation (phosphorylation) JNK and ERK however, FFO pretreatment 
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decreased. Furthermore, PM2.5 treatment induced the activation (phosphorylation) MAPK 

kinase (MEK) 1/2 and SAPK/ERK kinase (SEK) 1 (Figure 4A). In addition, PM2.5 

significantly increased intracellular Ca2+ level and FFO decreased PM2.5-induced Ca2+ level 

(Figure 4B and C). 
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Figure 4. Effect of FFO on PM2.5-induced MAPKs and intracellular Ca2+ level. (A) 

Expression level of p-JNK, p-ERK, p-MEK, and p-SEK by western blot analysis. Actin was 

used to loading control. *p < 0.05, #p < 0.05 compared to untreated cells and PM2.5-treated 

cells, respectively. (B) Intracellular Ca2+ level was detected by flow cytometry and (C) 

confocal microscopy after Flou-4-AM staining. *p < 0.05, #p < 0.05 compared to untreated 

cells and PM2.5-treated cells, respectively.    

3-5. Effect of FFO on PM2.5-induced transcription factor activator protein 1 (AP-1) 

expression 

The nuclear transcription factor AP-1 regulated by MAPKs, which increase MMP 

expression (Kim et al. 2018). Activation of MAPKs results in the heterodimeratization of c-

Jun/c-Fos and the formation of the AP-1 complex (Kim et al. 2017). As shown Figure 4, 

PM2.5 treatment increased MAPKs and intracellular Ca2+ level. Next, I determine c-Fos, 

phopho-c-Jun level using by western blot analysis. FFO significantly decreased PM2.5-

indeced phopho-c-Jun and c-Fos level (Figure 5A). In addition, FFO reduced the PM2.5-

induced AP-1 binding to the MMP-1 promoter (Figure 5B). 
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Figure 5. Effect of FFO on PM2.5-induced transcription factor activator protein 1 (AP-1) 

expression. (A) Expression level of phospho-c-Jun and c-Fos by western blot analysis. Actin 

was used to loading control. *p < 0.05, 
#
p < 0.05 compared to untreated cells and PM2.5-

treated cells, respectively. (B) AP-1 binding to the MMP-1 promoter was assessed by ChIP 

assay. *p < 0.05, #p < 0.05 compared to untreated cells and PM2.5-treated cells, respectively. 
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Figure 6. Schematic diagram of effect of FFO on PM2.5-induced skin aging. Expose of PM2.5 

increased intracellular ROS and induced skin aging in HaCaT cells. The mackerel derived 

FFO has anti-aging effect against PM2.5-induced skin aging through reduced intracellular 

ROS. 
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4. Discussion 

Skin is the largest organ in body which acts as the first defense barrier against harmful 

stimuli. Therefore, skin is always exposed harmful environment including PMs. In several 

studies, PM2.5 has been reported to have harmful effects such as inflammatory skin diseases, 

skin aging, and damage of respiratory system through generation of intracellular ROS (Kim 

et al. 2016; Romani et al. 2018; Xing et al. 2016).  

The accumulation of ROS has been reported that induced skin aging through the 

expression of MMPs such as MMP-1, MMP-2, and MMP-9 (Subedi et al. 2017). Therefore, 

it is important to find an effective antioxidant to prevent skin aging.  

Previous study demonstrated that mackerel derived FFO has directly ROS scavenging 

effect and protective effect on UVB-induced oxidative damage (Park et al. 2018). The 

present study focused on the effect of FFO which derived from mackerel against PM2.5-

induced skin aging.  

First, this study measured generation of intracellular ROS after PM2.5 treatment. Induction 

of intracellular ROS by PM2.5 treatment significantly reduced pretreatment of FFO (Figure 

1A and B). Since the generation of ROS cause skin aging, this study detected keratinocyte 

senescence using β-galactosidase (Yoshimoto et al. 2018). PM2.5 treatment increased β-

galactosidase activity and FFO significantly reduced PM2.5-induced β-galactosidase activity 

(Figure 2A and B). Next, because of MMPs caused skin aging through degradation of 

collagens (Chaiprasongsuk et al. 2017; Kim et al. 2017), this study detected activity of 

MMP-1 and expression level of MMP-1, MMP-2, and MMP-9. FFO has effect on PM2.5-

induced MMPs (Figure 3). These results indicate that PM2.5 induced intracellular ROS and 

skin aging through generation of MMPs. In addition, FFO has anti-aging effect via 
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scavenging ROS. 

ROS activates the MAPK signaling pathway and activation of MAPKs induced various 

transcription factors such as AP-1 and NF-κB (Pittayapruek et al. 2016; Sun et al. 2017). As 

a result of translocation of the activated AP-1, a heterodimer composed of c-Jun and c-Fos, 

MMPs were synthesized (Hwang et al. 2011; Kim et al. 2013). As shown Figure 4A, ERK 

and JNK activated by PM2.5 treatment and reduced by FFO pretreatment. MEK and SEK, the 

upstream of ERK and JNK respectively, also increased by PM2.5 treatment and decreased by 

FFO pretreatment (Figure 4A). In addition, intracellular Ca2+ level, regulating MAPKs, was 

significantly increased in PM2.5-treated cells. However, FFO was decreased the PM2.5-

induced Ca2+ level (Figure 4B and C). Furthermore, phospho-c-Jun and c-Fos levels were 

increased in PM2.5-treated cells and decreased in FFO-pretreatment cells (Figure 5A). PM2.5-

induced AP-1 binding to the MMP-1 promoter also reduced by FFO-pretreatment cells 

(Figure 5B). These results demonstrate that FFO can block PM2.5-induced MAPKs/AP-1 

pathway in human keratinocyte.  

In conclusion, mackerel derived FFO has anti-aging effect against PM2.5-induced skin 

aging through reduced intracellular ROS and expression of MMPs (Figure 6).   
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6. Abstract in Korean 

 

 피부는 미세먼지(particulate matters, PMs)를 비롯한 대기오염과 같은 유해한 

환경에 항상 노출된다. 이러한 미세먼지는 활성 산소 종(reactive oxygen species, 

ROS)의 증가를 통해 인체에 해로운 영향을 미친다. 세포 내 ROS는 콜라겐을 

분해하는 단백질 분해효소(matrix metalloproteinases)인 MMP-1을 생성할 수 있고 

그로 인해 피부 노화를 유발 할 수 있다고 알려져 있다. 이 연구는 고등어에서 

추출한 발효 어유(FFO)가 인간각질세포에서 초미세먼지(PM2.5)로 유도되는 

피부노화에 미치는 영향을 조사하였다. PM2.5를 처리한 세포에서 ROS증가와 

노화인자가 증가하는 것을 확인하였고 FFO 전처리 그룹에서 PM2.5로부터 

유도되는 ROS 증가, 노화인자 증가가 감소되는 것을 확인 할 수 있었다. 또한, 

콜라겐분해를 통해 피부노화를 일으킨다고 알려져 있는 MMP-1의 활성도와 

mRNA, 단백질 발현 수준 역시 PM2.5 처리로 증가되었지만 FFO전처리로 

감소되는 것을 볼 수 있었다. 또한 FFO는 MMP-1의 발현을 조절하는데 영향을 

주는 세포 내 Ca2+ 수준과 MAPKs/AP-1 경로를 차단 하는 것을 보여준다. 따라서 

이러한 결과는 고등어로부터 유래된 FFO는 PM2.5로 유도되는 피부노화에 있어서 

세포 내 ROS를 소거함으로써 피부노화에 효과를 가진다는 것을 시사한다.  
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