Metrization on M-spaces

한 철 순

Chul soon Han

Introduction

We shall prove what a space is an M-space, and what an M-epace is metrizable. We begin by defining an M -space.

Main Theorems

Definition 1 A space X is an M-space iff there exists a sequence $G_{1}, G_{2} \ldots$ of open covers of X such that
(1) For each n, G_{n+1} is a point-star refinement of G_{n}
(2) if $x_{n} \in \operatorname{st}\left(x, G_{n}\right), n=1,2, \cdots$, then the sequence x_{1}, x_{2}, \cdots has a cluster point. It follows from Definition 1 that if instead of (2) we had x as a cluster point of x_{1}, x_{2}, \cdots, then $\left\{s t\left(x, G_{n}\right): n-1,2, \cdots\right.$ would be a base at x, and hence X would be metrizable if X is a To-space, and every M-space is a W^{-}-space.
Theorem 1 Every countably compact metric space is an M-space
Proof Let X be a countably compact metric space with a metric d. Let $B_{\epsilon}(x)=\{y \in X: d(x, y)$ $\langle\epsilon, \epsilon>0\}$. Then $\left\{\mathrm{B}_{\epsilon}(x): x \in X, \epsilon>0\right\}$ is a base for the topology. For each $n=1,2,3, \cdots$, let $G_{n}=\left\{B_{\frac{1}{n}}(x): x \in X\right\}$ then each G_{n} is an open cover of X. So $\left\{G_{n}\right\}_{n \in N}$ is a sequence of open covers of X. Clearly, for each $n \in N$
G_{n+1} is a point-star refinement of Gn . If $x_{n} \in \operatorname{st}\left(x, G_{n}\right), n=1,2, \cdots$, then x_{1}, x_{2}, \cdots has a cluster point since X is countably compact. Therefore \mathbf{X} is an M -space.
Theorem 2 A paracompact T_{2}, W^{d}-space is an M-spece. Proof Let X be a paracompact $\mathrm{T}_{2}, \mathrm{~W}^{\mathrm{A}}$-space. Then we have a nested sequence $\left\{G_{n}\right\}$ of open covers of X such that whenever $x \in X$ and $\mathrm{x}_{\mathrm{n}} \in \mathrm{st}\left(\mathrm{x}, \mathrm{G}_{\mathrm{n}}\right), \mathrm{x}_{1}, \mathrm{x}_{2}, \cdots$ has a cluster point. We have known that a T_{1}-space is paracompact iff each open cover has an open pointstar refinement [2]. So each G_{n} has a sequence $\left\{G_{n k}\right\}_{k=1}$ of open covers of X such that each $G_{n k+1}$ is a point-star refinement of $G_{n k}$. Let. $H_{1}=G_{11}, H_{2}=G_{11} \cap G_{22}$ and for each $n>2, H_{n}=G_{1 n} \cap G_{2 n} n$ $\ldots \cap G_{n} n$. If $x \in X$, then $\operatorname{st}\left(x, H_{n+1}\right) \subset$ $\operatorname{st}\left(x, G_{1 n}\right) \cap \ldots \cap \operatorname{st}\left(x, G_{n+1 n}\right) \subset G_{1 n} \cap$ $\ldots \cap G_{n} \in H_{n}$ for some $G_{1 n} \in G_{n}, \ldots$ So each H_{n+1} is a point-star refinement of H_{n}. Clearly, if $x_{n} \in \operatorname{st}\left(x, H_{n}\right)$, then $x_{n} \in$ $s t\left(x, G_{n}\right)$, and x_{1}, x_{2}, \cdots has a culster point.
Lemma 1 Let G_{1}, G_{2}, \cdots be a sequence of opne covers of a space X satisfying conditions (1) and (2)
in Definition 1. For each $\mathrm{x} \in \mathbf{X}$, let
$C_{x}={\underset{n=1}{n}}^{s t}\left(x, G_{n}\right)$, then
(a) each C_{x} is a closed countably compact
subset.
(b) $\left\{\mathrm{C}_{\mathrm{x}}: \mathrm{x} \in \mathrm{X}\right\}$ is a partition of X .

Proof

A continuous $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is closed iff whenever $y \in Y$ and U is an open set containing $f^{-1}(y)$, then there exists an open set V containing y such that $f^{-1}(V) \subset U$.
Proof Suppose a continuous map $\mathrm{f}: \mathbf{X} \rightarrow \mathrm{Y}$ is closed. Let $y \in Y$ and U an open set contaning $f^{-1}(y)$. Let $V=Y-f(X-U)$, then V is open. Observing that $f^{-1}(V)=X-f^{-1}(f(X-U)) \subset X-(X-U)$ $=U$ completes "only if" part. For the converse, let F be closed in X, and suppose that $f(F)$ is not closed. Let $y \in Y-f(F)$ be a limit point of $f(F)$. Then $f^{-1}(y) \in X-F$. So there exists an open set V containing y such that $f^{1}(V) \subset X-F$. Let $p \in V \cap f(F)$, then there exists $x \in F$ such that $f^{-1}(x)=p$. Now, $f^{1}(x)$ $\in f^{1}(V) \subset X-F \Rightarrow x \notin F$. We have a contradiction. Therefore $f(F)$ is closed and f is closed.
Theorem 3 A space X is an M-space iff there exists a metric space Y and a closed continuous map $f: X \rightarrow Y$ from X onto Y such that $f^{-1}(y)$ is countably compact for each $y \in Y$.
Proof. Suppose X is an Mapace. There exists a sequence $\left\{G_{n}\right.$ \} of open covers of X aatisfying

Definition 1. For each $x \in X$, let $C_{x}=\underset{n=1}{-}$ $\operatorname{st}\left(\mathrm{x}, \mathrm{G}_{\mathrm{n}}\right)$, then $\overline{\mathrm{C}}_{\mathrm{x}}=\mathrm{C}_{\mathrm{x}}$ by Lemma 1. We first show that if $p \in X$ and $U \supset C_{p}$ is open in X, there exists an $n \in N$ such that $s t\left(p, G_{n}\right) \subset U$. Suppose that for each $n \in N, \operatorname{st}\left(p, G_{n}\right) \not \subset U$. For each $n \in N$, let $p_{n} \in \operatorname{st}\left(p, G_{n}\right)-U$, then $p_{1}, p_{2} \ldots$ has a cluster point q. Let $n \in N$. For each $m \geqslant n$, let $H_{p_{m}} \in G_{m}$ such that $s t\left(p_{m}, G_{n+1}\right) \subset H_{p_{m}}$. Let $m>n$ such that $P_{m} \in \operatorname{st}\left(q, G_{n+1}\right)$. Then $p \in \operatorname{st}\left(P_{m}, G_{m}\right) \subset$ $\operatorname{st}\left(p_{m}, G_{n+1}\right)$ and hence $p, q \in H_{P_{m}}$. Thus $q \in \operatorname{st}\left(p, G_{n}\right)$ and $q \in C_{p}$. We have a contradiction. Therefore if $p \in X$ and $U \supset C_{p}$ is open in X there exists an $n \in N$ such that st(p, $\left.\mathbf{G}_{\mathbf{n}}\right) \subset \mathbf{U}$. Let $\mathbf{Y}=\left\{\mathbf{C}_{\mathbf{x}}: \mathbf{x} \in \mathbf{X}\right\}$. Define $f: X \rightarrow Y$ by for each $x \in X, f(x)=C_{x}$. Then f is onto and $f^{1}\left(C_{x}\right)=C_{x}$ for each $x \in X$. By Lemmal, each $f^{1}\left(C_{x}\right)$ is countably compact for each $C_{X} \in Y$. Define the topdogy on Y as an identification topology determined by f. Clearly, f is continuous. Therefore, f is continuous, closed and whenever $C_{p} \in Y$ and U is an open set containing $f^{-1}\left(C_{p}\right)$ then there exists an open set V containing C_{p} such that $f^{-1}(V) \subset U$. Next we want to prove that Y is metrizable. We have known that a To space Y is metrizable iff there exists a sequence $\left\{H_{n}\right\}$ of open covers of Y with the property: for each $y \in Y$ and nbd W of y there exists a nbd V of y and an $n \in N$ such that st $\left(V, H_{n}\right)$ $\subset W$ [2]. We first show that Y is To. Let C_{y}, $C_{z} \in Y$ and $C_{y} \neq C_{z}$. Then $C_{y} \cap C_{z}=\phi$ by Lemma 1. Now, $C_{y} \subset X-C_{z}$ and $X-C_{z}$ is open by Lemma 1. By Lemma 2, there exists a nbd V of C_{y} such that $f^{-1}(V) \subset X \neg C_{z}$. So Y is To. For each $n \in N$, let $H_{n}=$ (UCY: U is open and $f^{-1}(U)$ is contained in some set of $\left.G_{n}\right\}$. Clearly, $\left\{H_{n}\right\}_{\text {is a sequence of open }}$ covers of Y. Let $n \in N$ and $C_{y} \in Y$. Since $C_{y}=\underset{n=1}{\infty} \operatorname{st}\left(y, G_{n}\right)$, then $C_{y} \subset \operatorname{st}\left(y, G_{n+1}\right) \subset g_{n}$ for some $g_{n} \in G_{n}$. Since f is closed, there exists a nbd V of C_{y} such that $f^{1}(V) \subset g_{n}$. So V $\in H_{n}$. Therefore each H_{n} is an open cover of Y. And $\left\{H_{n}\right\}_{n=1}^{-}$is a requence of open covers of Y. Let $C_{y} \in \dot{Y}$ and W a nbd of C_{y}.

Then $C_{y} \subset f^{\prime}(W)$ and there exists an $m \in N$ such that st $\left(y, G_{m}\right) \subset f^{1}(W)$.

Let $\mathrm{C}_{\mathrm{z}} \in \operatorname{st}\left(\mathrm{V}, \mathrm{H}_{\mathrm{m}}\right)$. By Lemma 2 , there exists an open set V containing Cy such that $\mathrm{f}^{-1}(\mathrm{~V}) \subset \mathrm{st}\left(\mathrm{y}, \mathrm{G}_{\mathrm{m}}\right)$. Let $\mathrm{C}_{2} \in \mathrm{st}(\mathrm{V}$, H_{m}) and choose $H \in H_{m}$ such that $C_{t} \in V$ and H and $C_{z} \in H$. But $C_{t}, C_{z} \subset f^{1}(H) \subset g_{m}$ $\in G_{m}$ Since $C_{t} \subset f^{1}(V)$, then $C_{t} \subset$ st $\left(y, G_{m}\right)$ and hence $C_{z} \subset \operatorname{st}\left(y, G_{m}\right)$. So $C_{z} \in W$. Therefore st $\left(V, H_{m}\right) \subset W$. Therefore X is metrizable. For the converse, let $\left\langle G_{n}\right\}$ be a sequence of open covers of Y such that
(1) each G_{n+1} is a point-star refinement of G_{n}, and
(2) if $y \in Y$ and for each $n \in N, y_{n} \in \operatorname{st}(y$, G_{n}) then y_{1}, y_{2}, \cdots has a cluster point y. For each $n \in N$, let $H_{n}=\left\{f^{-1}\left(g_{n}\right): g_{n} \in G_{n}\right\}$. Then $\left\{H_{n}\right.$) is a sequence of open covers of X. We claim H_{n+1} to be a point-star refinement of H_{n}. Let $x \in X$ and $y \in Y$ such that $y=$ $f(x)$. Let $g_{n} \in G_{n}$ such that $\operatorname{st}\left(y, G_{n+1}\right) \subset g_{n}$. To show st $\left(x, H_{n+1}\right) \subset f^{1}\left(g_{n}\right)$, let $p \in \operatorname{st}(x$, H_{n+1}). Let $h_{n+1} \in H_{n+1}$ such that p, $x \in h_{n+1}$. Let $g_{n+1} \in G_{n+1}$ such that $h_{n+1}=$ $f^{-1}\left(g_{n+1}\right)$. Then $f(p), f(x) \in g_{n+1}$. Thus $f(p) \in \operatorname{st}\left(y, G_{n+1}\right)$ and so $f(p) \in g_{g_{n}}$. Hence $p \in f^{-1}\left(g_{n}\right)$. So H_{n+1} is a point-star refinement of H_{n}. Next suppose $x_{n} \in \operatorname{st}\left(x, H_{n}\right)$, $n=1,2, \cdots$. For each $n \in N$, let $g_{n} \in G_{n}$ such that $x_{n}, x \in f^{\prime}\left(g_{n}\right)$. Then $y=f(x), f\left(x_{n}\right) \in g_{n}$ and $f\left(x_{n}\right) \in \operatorname{st}\left(y, G_{n}\right), n=1,2, \cdots$. So $f\left(x_{1}\right)$, $f\left(x_{2}\right), \cdots$ has a cluster point y. Suppose no point of $f^{1}(y)$ is a cluster point of $\left|x_{1}, x_{2}, \cdots\right|$. For each $x \in f^{-1}(y)$, let U_{x} be a nbd of x and. $n_{x} \in N$ such that if $m>n_{x}, x_{m} \notin U_{\dot{x}}$. For each $n \in N$, let $U_{n}=U\left\{U_{x}: x \in X\right.$ and $\left.n_{x}=n\right\}$. Then $U_{1}, U_{2}, \cdots U_{n_{m}}$ be a finite subcover of $\mathrm{f}^{1}\left(\mathrm{C}_{\mathrm{y}}\right)$. Let V be a nhd of y such that $f^{-1}(V) \subset \mathbb{U}_{k=1}^{m} U_{n_{k}}$. Let $n \in N$ such that if $m>n$ then $f\left(x_{n}\right) \in V$. Choose $\ell \in N$ such that $i>\max \left(n_{1}, \cdots, n_{m}\right)$. Then $f\left(x_{i}\right) \in V \Rightarrow$ $x_{b} \in f^{-1}(V) \subset \bigcup_{k=1}^{m} U_{n_{k}}$. Let $k \leqslant m$ such that $x_{g} \in U_{n_{k}}$. Let $x \in X$ such that $n_{x}=n_{k}$ and $x_{q} \in U_{x}$. Since $\rho>n_{k}$, then $x_{g} \in U_{x}$ contradition. So x_{1}, x_{2}, \cdots has a cluster point in $f^{-1}(y)$. Therefore, X is an M-space.

Definition 2 A continuous map $f: X \xrightarrow{\text { onto }} \mathbf{Y}$ is quasiperfect iff f is closed and $f^{1}(y)$ is countably compact for each $y \in Y$. It follows from Theorem 3 and Definition 2 that an M-space is a quasi-perfect preimage of a metric space. Note that a perfect map is quasi-perfect.
Lemma 3 Suppose X and Y are T_{2} spaces. If $f: X \xrightarrow{\text { onto }}$ Y is perfect, then X is paracompact iff Y is peracompact.
Proof It follows from [2] that X is paracompact iff Y is paracompect.
Theorem 4 For T_{2} space, the following are equivalent.
(1) X is a perfect preimage of a metric space.
(2) X is a paracompact M -space.
(3) X is subparacompact or metacompact M-space.
(4) X is a parecompact $\mathrm{W}^{\mathbf{5}}$-space.

Proof $\quad(1) \Rightarrow(2)$:
It follows from [2] that every metric space is paracompact. So X is parscompact by Lemma 3 and an M-apace by the notice of Definition 3.
(2) \Rightarrow (3):

It follows from [2] that X is metacompact We have known that every paracompact space is subparacompact.
(3) \Rightarrow (4) :

It follows from Definition 1 that X is a W^{*}. space Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be quasi-perfect and Y_{a} metric mace. Then for each $y \in Y, f^{-1}(y)$ is countat.,y compact. Since X is metacompact or subparscompact, then $\boldsymbol{P}^{\mathbf{1}}(\boldsymbol{y})$ is compact. So f is perfect.
Note that \mathbf{Y} is parscompact.
It follows from Lemma 3 that X is paracompact. Therefore \mathbf{X} is a paracompact W^{4}-space (4) \Rightarrow (1):

It follows from Theorem 2 that M is a paracompact M-space.
Let $f: X \rightarrow Y$ be quasi-perfect and Y a metric space. For each $y \in Y, f^{1}(y)$ is countably compact and also paracompact, hence metacompact.
It follows from [2] that $f^{1}(y)$ is compact. So f is perfect.
Therefore X is a perfect preimage of a metric
space．
Theorem 5．An M－space with a G δ－diagonal is metrizable． Proof Let X be an M－space with a G_{δ}^{*}－diagonal． Let $f: X \rightarrow Y$ be quasi－perfect and Y a metric space．Then for each $y \in Y, f^{-1}(y)$ is coun－ tably compact．It follows from［1］that X has a $\mathrm{G}_{\boldsymbol{\delta}}$－diagonal．We have known that if X has a G_{δ}－diagonal，then $\mathrm{f}^{-1}(\mathrm{y})$ has a G_{δ}－dia－ gonal and hence $f^{1}(y)$ has a G_{δ}－diagonal． Let $\left\{G_{n}\right\}$ be a sequence of open covers of $f(y)$ such that
whenever $p, q \in f^{-1}(y)$ with $p \neq q$ ，there exists an $n \in N$ and $n b d s$ pectively，such that no member of G_{n} meets both U_{p} and V_{q} ．Let $\left\{\mathrm{U}_{\alpha}: \alpha \in \Lambda\right\}$ be an open cover of $f^{-1}(y)$ ，and for a fixed n ，let $H_{\alpha}=\left\{U_{\alpha} \cap G: \alpha \in \Lambda, G \in G_{n}\right\}$ ，then $\left\{H_{\alpha}\right\}$ is an open refinement of $\left\{U_{\alpha}\right\}$ ．

Literature Cited

〔1〕 Chulsoon Han，On the W^{Δ}－space，Cheju Na － tional University，Vol．12， 1980
［2］J．Dugundj，Topology，Allyn and Bacon C． 1966
［3］Chulsoon Han，Stratifiable Spaces，Cheju National University，Vol．12． 1980

For $p \in f^{1}(y)$ with $p \neq y$ there exist nbds，
U_{p} and U_{y} of p and y, respectively, such that
no member of $G n$ meets both Up and Uy.
So $\left\{\mathrm{H}_{\alpha}\right\}$ is locally finite.
Therefore f^{\prime} (y) is paracompact and hence
metacompact. It follows from [2] that
$\mathrm{f}^{-1}(y)$ is compact.
So f is perfect.
Therefore X is a perfect preimage of metric
space and hence a paracompact W^{Δ}-space.
It follows from [1] and [2] that X is me-
trizable.
Conclusion
In our paper we have proved an exact condi-
tion to be an M-space, and also we gener-
alized theorem $S,[1]$, that is, X is metrizable
iff X is paracompact T_{2}, W^{*}-space has a G_{δ}.
diagonal.

文 抄 錚

이 논문에 서는 M －퐁간이 둴 필요 충분 조건율 증명하고 그의 거리화 문제를 증명하였다． 또한 〔 1 〕에서 보인 정리 5 를 일반화 하였음을 보였다．

