Metrization on M-spaces

한 철 순

Chul soon Han

Introduction

We shall prove what a space is an M-space, and what an M-space is metrizable. We begin by defining an M-space.

Main Theorems

Definition 1 A space X is an M-space iff there exists a sequence $G_1, G_2 \cdots$ of open covers of X such that

- (1) For each n, G_{n+1} is a point-star refinement of G_n ,
- (2) if x_n ∈ st(x, G_n), n = 1,2, ..., then the sequence x₁, x₂, ... has a cluster point. It follows from Definition 1 that if instead of
 (2) we had x as a cluster point of x₁, x₂, ..., then { st(x, G_n): n · 1,2, ...} would be a base at x, and hence X would be metrizable if X is a To-space, and every M-space is a W^a-space.

Theorem 1 Every countably compact metric space is an M-space

Proof

Let X be a countably compact metric space with a metric d. Let $B_{\epsilon}(x) = \{ y \in X : d(x, y) < \epsilon, \epsilon > 0 \}$. Then $\{ B_{\epsilon}(x) : x \in X, \epsilon > 0 \}$ is a base for the topology. For each $n = 1, 2, 3, \cdots$, let $G_n = \{ B_{\frac{1}{n}}(x) : x \in X \}$ then each G_n is an open cover of X. So $\{ G_n \}_{n \in \mathbb{N}}$ is a sequence of open covers of X. Clearly, for each $n \in \mathbb{N}$

 G_{n+1} is a point-star refinement of Gn. If $x_n \in st(x, G_n)$, $n = 1, 2, \cdots$, then x_1, x_2, \cdots has a cluster point since X is countably compact. Therefore X is an M-space.

Theorem 2 Proof A paracompact T2, W*-space is an M-space. Let X be a paracompact T₂, W^a-space. Then we have a nested sequence { G_n } of open covers of X such that whenever $x \in X$ and $x_n \in st(x, G_n), x_1, x_2, \dots$ has a cluster point. We have known that a T1 -space is paracompact iff each open cover has an open pointstar refinement [2]. So each G_n has a sequence $\{G_{n,k}\}_{k=1}$ of open covers of X such that each G_{n k+1} is a point-star refinement of $G_{n,k}$. Let $H_1 = G_{11}$, $H_2 = G_{11} \cap G_{22}$ and for each n > 2, $H_n = G_{1,n} \cap G_{2,n} \cap$... $\cap G_{n,n}$. If $x \in X$, then $st(x, H_{n+1}) \subset$ $st(x, G_{n}) \cap ... \cap st(x, G_{n+1}) \subset G_{n} \cap$... $\cap G_{n n} \in H_n$ for some $G_{1 n} \in G_n$, ... So each H_{n+1} is a point-star refinement of H_n . Clearly, if $x_n \in st(x, H_n)$, then $x_n \in$ $st(x, G_n)$, and x_1, x_2, \dots has a culster point. Let G₁, G₂, ... be a sequence of opne covers of a space X satisfying conditions (1) and (2)

Lemma 1

in Definition 1. For each $x \in X$, let $C_X = \bigcap_{n=1}^{\infty} st(x, G_n)$, then
(a) each C_X is a closed countably compact

subset.

(b) $\{C_X : x \in X\}$ is a partition of X.

Proof

(a) Pick $x \in X$. Let $w \in \overline{C}_{\lambda}$.

If $n \in N$, there exists $G \in G_{n+2}$ such that $w \in G : G$ must meet C_X and so G meets st(x, G_{n+2}). So $w \in \text{st}(\text{st}(x, G_{n+1}), G_{n+2}) \subset \text{st}(x, G_n)$. Hence $w \in C_X$ and $\overline{C}_X = C_X$. Therefore C_X is closed. If x_1, x_2, \cdots , is a sequence in C_X , then for each $n \in N$, $x_n \in \text{st}(x, G_n)$, so x_1, x_2, \cdots has a cluster point. So C_X is countably compact. Therefore each C_X is a closed countably compact subset.

(b) Suppose $C_X \cap C_y = \phi$. Then for each n, $st(x, G_n) \cap st(y, G_n) = \phi$. Let $z \in C_X$, then for each n, $z \in st(x, G_{n+4})$, which meets $st(y, G_{n+4})$ and so $st(st(z, G_{n+4}), G_{n+4})$ meets $st(y, G_{n+4})$. Since $st(st(z, G_{n+4}), G_{n+4}) \subset st(z, G_{n+2})$ then $st(z, G_{n+2})$ meets $st(y, G_{n+2})$ and $z \in st(st((y, G_{n+2}), G_{n+2})) \subset st(y, G_n)$. So $z \in C_X$. Therefore,

 $C_{\mathbf{x}} \subset C_{\mathbf{y}}$. Similarly as before we have $C_{\mathbf{y}} \subset C_{\mathbf{x}}$. Hence $C_{\mathbf{x}} = C_{\mathbf{y}}$. Therefore, $C_{\mathbf{x}} = C_{\mathbf{y}}$.

 $x \in X$ is a partition of X.

Lemma 2 A continuous $f: X \to Y$ is closed iff whenever $y \in Y$ and U is an open set containing $f^1(y)$, then there exists an open set V containing y such that $f^1(V) \subset U$.

Proof

Suppose a continuous map $f: X \to Y$ is closed. Let $y \in Y$ and U an open set containing $f^1(y)$. Let V = Y - f(X-U), then V is open. Observing that $f^1(V) = X - f^{-1}(f(X-U)) \subset X - (X-U) = U$ completes "only if" part. For the converse, let F be closed in X, and suppose that f(F) is not closed. Let $y \in Y - f(F)$ be a limit point of f(F). Then $f^1(y) \in X - F$. So there exists an open set V containing y such that $f^1(V) \subset X - F$. Let $p \in V \cap f(F)$, then there exists $x \in F$ such that $f^1(x) = p$. Now, $f^1(x) \in f^1(V) \subset X - F \to x \notin F$. We have a contradiction. Therefore f(F) is closed and f is closed.

Theorem 3 A space X is an M-space iff there exists a metric space Y and a closed continuous map f:X→Y from X onto Y such that f¹(y) is countably compact for each y∈Y.

Proof. Suppose X is an M-space. There exists a sequence $\{G_n\}$ of open covers of X satisfying

Definition 1. For each $x \in X$, let $C_X = \bigcap_{n=1}^{\infty}$ $st(x, G_n)$, then $\overline{C}_x = C_x$ by Lemma 1. We first show that if $p \in X$ and $U \supset C_p$ is open in X, there exists an $n \in N$ such that $st(p, G_n) \subset U$. Suppose that for each $n \in \mathbb{N}$, st $(p, G_n) \not\subset U$. For each $n \in N$, let $P_n \in st(p, G_n) - U$, then $p_1, p_2 \dots has a cluster point q. Let <math>n \in N$. For each m > n, let $H_{p_m} \in G_m$ such that $\operatorname{st}(p_m,G_{n+1}) \subset H_{p_m}$. Let m > n such that $P_m \in st(q, G_{n+1})$. Then $p \in st(P_m, G_m) \subset$ $\mathsf{st}(P_m,\,G_{n+1})$ and hence $p,\,q\in H_{p_m}$. Thus $q \in st(p, G_n)$ and $q \in C_p$. We have a contradiction. Therefore if $p \in X$ and $U \supset C_p$ is open in X there exists an n∈N such that st(p, G_n) \subset U. Let Y = $\{C_x : x \in X\}$. Define f: $X \to Y$ by for each $x \in X$, $f(x) = C_x$. Then f is onto and $f^{-1}(C_x) = C_x$ for each $x \in X$. By Lemmal, each f¹(C_x) is countably compact for each $C_X \in Y$. Define the topdogy on Y as an identification topology determined by f. Clearly, f is continuous. Therefore, f is continuous, closed and whenever $C_p \in Y$ and U is an open set containing f (Cp) then there exists an open set V containing Cp such that $f^{-1}(V) \subset U$. Next we want to prove that Y is metrizable. We have known that a To space Y is metrizable iff there exists a sequence { H_n} of open covers of Y with the property: for each y ∈ Y and nbd W of y there exists a nbd V of y and an $n \in N$ such that st (V, H_n) \subset W [2]. We first show that Y is To. Let C_V , $C_z \in Y$ and $C_v \neq C_z$. Then $C_y \cap C_z = \phi$ by Lemma 1. Now, $C_v \subset X - C_z$ and $X - C_z$ is open by Lemma 1. By Lemma 2, there exists a nbd V of C_{V} such that $f^{1}(V) \subseteq X \neg C_{Z}$. So Y is To. For each $n \in \mathbb{N}$, let $H_n = \{U \subset Y : U$ is open and f4(U) is contained in some set of G_n Clearly, $\{H_n\}$ is a sequence of open covers of Y. Let $n \in N$ and $C_v \in Y$. Since $C_y = \bigcap_{n=1}^{\infty} st(y, G_n), \text{ then } C_y \subset st(y, G_{n+1}) \subset g_n$ for some $g_n \in G_n$. Since f is closed, there exists a nbd V of C_v such that $f^1(V) \subseteq g_n$. So V $\in H_n$. Therefore each H_n is an open cover of Y. And $\{H_n\}_{n=1}^{\infty}$ is a sequence of open covers of Y. Let $C_v \in Y$ and W a nbd of C_v . Then $C_y \subset f^1(W)$ and there exists an $m \in N$ such that $st(y, G_m) \subset f^1(W)$.

Let $C_z \in \mathfrak{st}(V, H_m)$. By Lemma 2, there exists an open set V containing C_Y such that $f^1(V) \subset \mathfrak{st}(y, G_m)$. Let $C_z \in \mathfrak{st}(V, H_m)$ and choose $H \in H_m$ such that $C_t \in V$ and H and $C_z \in H$. But $C_t, C_z \subset f^1(H) \subseteq g_m \in G_m$ Since $C_t \subset f^1(V)$, then $C_t \subset \mathfrak{st}(y, G_m)$ and hence $C_z \subset \mathfrak{st}(y, G_m)$. So $C_z \in W$. Therefore $\mathfrak{st}(V, H_m) \subset W$. Therefore X is metrizable. For the converse, let $\{G_n \mid be\ a \ sequence\ of\ open\ covers\ of\ Y\ such\ that$

- each G_{n+1} is a point-star refinement of G_n, and
- (2) if $y \in Y$ and for each $n \in N$, $y_n \in st(y, y_n)$ G_n) then y₁, y₂, ... has a cluster point y. For each $n \in \mathbb{N}$, let $H_n = \{ f^1(g_n) : g_n \in G_n \}$. Then $\{H_n\}$ is a sequence of open covers of X. We claim H_{n+1} to be a point-star refinement of H_n . Let $x \in X$ and $y \in Y$ such that y=f(x). Let $g_n \in G_n$ such that $st(y, G_{n+1}) \subset g_n$. To show $st(x, H_{n+1}) \subset f^{1}(g_{n})$, let $p \in st(x, f^{2})$ H_{n+1}). Let $h_{n+1} \in H_{n+1}$ such that p, $x \in h_{n+1}$. Let $g_{n+1} \in G_{n+1}$ such that $h_{n+1} =$ $f^1(g_{n+1})$. Then f(p), $f(x) \in g_{n+1}$. Thus $f(p) \in st(y, G_{n+1})$ and so $f(p) \in g_n$. Hence $p \in f^{-1}(g_n)$. So H_{n+1} is a point-star refinement of H_n . Next suppose $x_n \in st(x, H_n)$, $n = 1, 2, \dots$. For each $n \in \mathbb{N}$, let $g_n \in G_n$ such that $x_n, x \in f^{-1}(g_n)$. Then $y = f(x), f(x_n) \in g_n$ and $f(x_n) \in st(y, G_n)$, $n = 1, 2, \dots$ So $f(x_1)$, $f(x_2)$, ... has a cluster point y. Suppose no point of $f^1(y)$ is a cluster point of $\{x_1, x_2, \dots\}$ For each $x \in f^1(y)$, let U_y be a nbd of x and $n_x \in N$ such that if $m > n_x$, $x_m \notin U_{x'}$. For each $n \in N$, let $U_n = U \{ U_x : x \in X \text{ and } \}$ $n_x = n$. Then $U_1, U_2, \dots U_{n_m}$ be a finite subcover of f¹(C_v). Let V be a nhd of y such that $f^{-1}(V) \subset \bigcup_{k=1}^{m} U_{n_k}$. Let $n \in \mathbb{N}$ such that if m > n then $f(x_n) \in V$. Choose $k \in N$ such that $i > \max(n_1, \dots, n_m)$. Then $f(x_i) \in V \Rightarrow$ $x_k \in f^1(V) \subset \bigcup_{k=1}^m U_{n_k}$. Let $k \le m$ such that $x_{\varrho} \in U_{n_{\mathbf{k}}}$. Let $x \in X$ such that $n_{\mathbf{x}} = n_{\mathbf{k}}$ and $\mathbf{x}_{\varrho} \in \mathbf{U}_{\mathbf{x}}$. Since $\ell > \mathbf{n}_{\mathbf{k}}$, then $\mathbf{x}_{\varrho} \in \mathbf{U}_{\mathbf{x}}$ contradition. So x1, x2, ... has a cluster point in f¹(y). Therefore, X is an M-space.

Definition 2 A continuous map f: X → Y is quasiperfect iff f is closed and f¹(y) is countably compact for each y ∈ Y. It follows from Theorem 3 and Definition 2 that an M-space is a quasi-perfect preimage of a metric space. Note that a perfect map is quasi-perfect.

Lemma 3 Suppose X and Y are T₂ spaces. If f: X onto
Y is perfect, then X is paracompact iff Y is
paracompact.

Proof It follows from [2] that X is paracompact iff Y is paracompact.

- Theorem 4 For T₂ space, the following are equivalent.

 (1) X is a perfect preimage of a metric space.
 - (2) X is a paracompact M-space.
 - (3) X is subparacompact or metacompact M-space.
 - (4) X is a paracompact Wa-space.

Proof $(1) \Longrightarrow (2)$:

It follows from [2] that every metric space is paracompact. So X is paracompact by Lemma 3 and an M-space by the notice of Definition 3.

(2) (3):

It follows from [2] that X is metacompact.

We have known that every paracompact space is subparacompact.

(3) = (4):

It follows from Definition 1 that X is a W^{\triangle} -space Let $f\colon X\to Y$ be quasi-perfect and Y a metric mace. Then for each $y\in Y$, $f^{-1}(y)$ is countably compact. Since X is metacompact or subparacompact, then $f^{-1}(y)$ is compact. So f is perfect.

Note that Y is paracompact.

It follows from Lemma 3 that X is paracompact. Therefore X is a paracompact W^{\triangle} -space (4) \Longrightarrow (1):

It follows from Theorem 2 that M is a paracompact M-space.

Let $f: X \to Y$ be quasi-perfect and Y a metric space. For each $y \in Y$, $f^1(y)$ is countably compact and also paracompact, hence metacompact.

It follows from [2] that f^{-1} (y) is compact. So f is perfect.

Therefore X is a perfect preimage of a metric

space.

Theorem 5. Proof

An M-space with a G_δ^* -diagonal is metrizable. Let X be an M-space with a G_δ^* -diagonal. Let $f\colon X\to Y$ be quasi-perfect and Y a metric space. Then for each $y\in Y$, f^1 (y) is countably compact. It follows from [1] that X has a G_δ -diagonal. We have known that if X has a G_δ -diagonal, then f^1 (y) has a G_δ^* -diagonal and hence f^1 (y) has a G_δ^* -diagonal. Let $\{G_n\}$ be a sequence of open covers of f(y) such that

whenever p, $q \in f^{-1}$ (y) with $p \neq q$, there exists an $n \in N$ and nbds Up, Vq of p and q, respectively, such that no member of G_n meets both U_p and V_q . Let $\{U_\alpha : \alpha \in \Lambda\}$ be an open cover of f^{-1} (y), and for a fixed n, let $H_\alpha = \{U_\alpha \cap G : \alpha \in \Lambda, G \in G_n\}$, then $\{H_\alpha\}$ is an open refinement of $\{U_\alpha\}$.

Literature Cited

- (1) Chulsoon Han, On the W-space, Cheju National University, Vol. 12, 1980
- [2] J. Dugundj, Topology, Allyn and Bacon C. 1966
- (3) Chulsoon Han, Stratifiable Spaces, Cheju National University, Vol. 12. 1980

For $p \in f^1$ (y) with $p \neq y$ there exist nbds, U_p and U_y of p and y, respectively, such that no member of Gn meets both U_p and U_y . So $\{H_{\alpha}\}$ is locally finite.

Therefore f^1 (y) is paracompact and hence metacompact. It follows from [2] that f^1 (y) is compact.

So f is perfect.

Therefore X is a perfect preimage of metric space and hence a paracompact W^{Δ} -space. It follows from [1] and [2] that X is metrizable.

Conclusion

In our paper we have proved an exact condition to be an M-space, and also we generalized theorem 5, [1], that is, X is metrizable iff X is paracompact T_2 , W^{\triangle} -space has a G_{δ} -diagonal.

國文抄錄

이 논문에서는 M-공간이 될 필요 충분 조건을 증명하고 그의 거리화 문제를 증명하였다. 또한 [1]에서 보인 정리 5 를 일반화 하였음을 보였다.