On the Covariant Derivative of the Nonholonomic Vectors in Vn

Hyun Jin－oh

Vn 굥간에서 Nonholonomic Vector 들의 공변미분에 관하여
玄 進 五

I．Introduction

Let $\quad V_{n}$ be a n－dimensional Riemannian space referred to a real coordinate system x^{ν} and defined by a fundamental metric tensor $T_{\lambda \mu}$ ，whose determinant

$$
\text { (1.1) } T \stackrel{\text { def }}{=} \operatorname{Det}\left(\left(T_{\lambda_{\mu}}\right)\right) \neq 0 .
$$

According to（1．1）there is a unique tensor $T^{\lambda \nu}=T^{\nu \lambda}$ defined by

$$
\text { (1.2) } T_{\lambda \mu} T^{\lambda \nu} \stackrel{\text { def }}{=} \delta_{\mu}^{\nu}
$$

Let $e_{i}^{\nu}(i=1,2, \ldots, n)$ be a set of n linearly independent vectors．Then there is a unique reciprocal set of n linearly independent covariant vectors $\dot{e}_{\lambda}^{i}(i=1,2, \ldots, n)$ satisfying
（1．3）${\underset{i}{e}}^{v} e_{\lambda}^{i}=\delta \zeta^{* *}$
${ }_{j}^{e^{\lambda}} e_{\lambda}^{i}=\delta_{j}^{i}$

With the vectors e^{ν} and ${ }^{i}{ }_{\lambda}$ a nonholono－ mic frame of $V_{\boldsymbol{n}}$ defined in the following way If $\mathrm{T}_{\lambda}^{\ell} \ldots$ ．．are holonomic components of a tensor，then its nonholonomic components are defined by

$$
\begin{equation*}
T_{j \ldots}^{i . \ldots} \stackrel{\text { def }}{=} T_{\lambda}^{\nu} \ldots \stackrel{i}{e}_{\nu}^{i} e_{j}^{\lambda} \ldots \tag{1.4}
\end{equation*}
$$

From（1．3）and（1．4）

II．Preliminary results
In this section，for our further discussion， results obtained in our previous paper will be introduced without proof．

Theorem 2．1．We have

$$
\begin{equation*}
T^{\lambda \mu}=e_{i}^{\lambda} T^{\ddot{\ddot{ }}} f_{j}^{\mu}=e_{\mu}^{i} T_{i \ddot{j}}{ }_{\mu}^{j} \tag{2.1}
\end{equation*}
$$

[^0]Theorem 2.2. The derivative of $\frac{\lambda}{i}$ is negative self-adjoint. That is

$$
\begin{equation*}
\partial_{k}\left(\stackrel{j}{e}{ }_{\lambda}\right){\underset{j}{\mu}}_{\dot{j}}=-\dot{d}_{k}\left(e_{j}^{\mu}\right) \stackrel{j}{e} \underset{\lambda}{j} \tag{2.2}
\end{equation*}
$$

Thearem 2.3. The nonholonomic components of the christoffel symbols of the second kind may be expressed as

$$
\left\{\begin{array}{l}
i \tag{2.3}\\
j k
\end{array}\right\}=e_{v}^{i} e_{k}^{\mu}\left(\nabla_{\mu} e_{j}^{v}\right)=-e_{j}^{\nu} \underset{k}{e^{\mu}}\left(\nabla_{\mu} e_{v}^{i}\right)
$$

, where ∇_{k} is the symbol of the covariant derivative with respect to $\left\{\begin{array}{l}i \\ j k\end{array}\right\}$

Theorem 2.4. The holonomic components of the christoffel symbols, as follows;
(2.4)a $[\lambda \mu, w]=[\ddot{q}, m] e_{\lambda}^{i} e_{\mu}^{k} \stackrel{m}{e}_{w}+a_{j k}\left(\partial_{\mu} \dot{e}_{\lambda}\right) e_{\mu}^{k}$

$$
\begin{align*}
\mathrm{b}\left\{\begin{array}{l}
v \\
\lambda \mu
\end{array}\right\} & =\left\{\begin{array}{l}
i \\
j k
\end{array}\right\} \underset{i}{e^{v}}{\underset{\lambda}{j}}_{j}^{j} e_{\mu}^{k}-\left(\partial_{\mu} e_{j}^{v}\right) e_{\lambda}^{j} \tag{2.4}\\
& =\left\{\begin{array}{l}
i \\
j k
\end{array}\right\} \begin{array}{l}
e^{v} e_{\lambda}^{j}
\end{array} e_{\mu}^{k}+\left(\partial_{\mu} e_{\lambda}^{j}\right) e_{j}^{v}
\end{align*}
$$

Theorem 2.5. The holonomic components of the christoffel symbols of the second kind may be expressed as

$$
\left\{\begin{array}{l}
v \tag{2.5}\\
\lambda_{\mu}
\end{array}\right\}=-e_{\lambda}^{i} e_{\mu}^{k}\left(\nabla_{k} \frac{e_{j}^{\nu}}{j}\right)=e_{\mu}^{k} \underset{j}{e^{v}}\left(\nabla_{\mu}^{\stackrel{j}{e}}\right)
$$

III. Covariant Derivatives of the Nonholonomic

 Covariant and Contravariant Vectors in $\mathbf{V n}$We see the partial derivatives of the holonomic components of a vector is not components of a tensor in Vn

In this paper, reconstruct and invastigate the relationships between the partial derivative of the holonomic and nonholonomic components of a vector.

Take a coordinate system y^{i} for which we have at a point p of V_{n}
(3.1) $\frac{\partial y^{i}}{\partial x^{\lambda}}=e_{\lambda}^{i} . \quad \frac{\partial x^{\nu}}{\partial y^{i}}=e_{i}^{v}$.

We have

Theorem 3.1. The covariant derivative of the holonomic covariant vector, is given by

$$
\begin{align*}
\nabla_{\mu}\left(a_{\lambda}\right) & =\left[\frac{\partial a_{j}}{\partial y k}-a_{i}\left\{\begin{array}{c}
i \\
i k
\end{array}\right\}\right] e_{\mu}^{k} e_{\lambda}^{j} \tag{3.2}\\
& =\nabla_{k}\left(a_{j}\right) e_{\mu}^{k} e_{\lambda}^{j}
\end{align*}
$$

Proof. By means of the covariant derivative of holonomic vector

$$
\nabla_{\mu}\left(a_{\lambda}\right)=\frac{\partial a_{\lambda}}{\partial x^{\mu}}-a_{\nu}\left\{\begin{array}{c}
\nu \tag{3.3}\\
\lambda \mu
\end{array}\right\}
$$

Using (1.5) and (2.4)b,

$$
\begin{align*}
& \nabla \mu\left(a_{\lambda}\right)=\frac{\partial}{\partial x^{\mu}}\left(a_{j} \stackrel{j}{e_{\lambda}}\right)-a_{i} e_{v}^{i}\left[\left\{\begin{array}{l}
i \\
j_{k}
\end{array}\right\}\right. \tag{3.4}\\
& \left.e_{i}^{v} e_{\lambda}^{j} e_{\mu}^{k}+\partial_{\mu}\left(\stackrel{j}{e_{\lambda}}\right) e_{j}^{\nu}\right]
\end{align*}
$$

By virtiue of (1.3) and

Hence we obtain

$$
\text { (3.6) } \begin{align*}
F_{\mu}\left(a_{\lambda}\right) & =\left(\frac{\partial}{\partial y^{k}} a_{j}\right) e_{\lambda}^{j} e_{\mu}^{k}-a_{i}\left\{\begin{array}{c}
i \\
j k
\end{array}\right\}{ }^{j} e_{\lambda} e_{\mu}^{k} \tag{3.6}\\
& =\nabla_{k}\left(a_{j}\right) e_{\lambda}^{j} e_{\mu}^{k} \\
\text {, where } \quad \Gamma_{k}\left(a_{j}\right) & =\frac{\partial a_{j}}{\partial y^{k}}-a_{i}\left\{\begin{array}{c}
i \\
j k
\end{array}\right\}
\end{align*}
$$

Theorem 3.2. We have the covariant derivative of the nonholonomic covariant vector is equivalent to

$$
\begin{align*}
\nabla_{k}\left(a_{j}\right) & =\left[\frac{\partial a_{\lambda}}{\partial x^{\mu}}-a_{\nu}\left\{\begin{array}{c}
\nu \\
\lambda \mu
\end{array}\right\}\right] e_{k}^{\mu} e_{j}^{e_{1}^{\lambda}} \tag{3.7}\\
& =\nabla_{\mu}\left(a_{\lambda}\right) e_{k}^{\mu} e_{j}^{\lambda}
\end{align*}
$$

Proof. Multiplying $e_{k}^{\mu} e_{j}^{\lambda}$ to both sides of (3.2) and using (2.1) and (3.3), we obtain (3.7).

Corollary 3.3. We have
(3.8) $\Gamma_{\mu}\left(a_{\lambda}\right)=\frac{\partial a}{\partial x^{\mu}}-a_{j}\left(\nabla_{\mu} e^{j} \lambda\right)$

Proof. Using (1.4), (2.4) and (3.3)

$$
\begin{align*}
\nabla_{\mu}\left(a_{\lambda}\right) & =\frac{\partial a_{\lambda}}{\partial x^{\mu}}-a_{i} e_{\nu}^{i}\left(\nabla_{\mu} \stackrel{j}{e}_{\lambda}\right) e_{\mu}^{k} e_{j}^{\nu} \tag{3.9}\\
& =\frac{\partial a_{\lambda}}{\partial x^{\mu}}-a_{j}\left(\nabla_{\mu} \stackrel{j}{e}_{\lambda}\right)
\end{align*}
$$

Corollary 3.4. We have

$$
\begin{equation*}
\nabla_{\mu}\left(a_{\lambda}\right)=\frac{\partial a_{j}}{\partial y^{k}} \stackrel{j}{e_{\lambda}} e_{\mu}^{k}+a_{j}\left(\nabla_{\mu} \stackrel{j}{\beta}_{\beta}\right) \tag{3.10}
\end{equation*}
$$

Proof. From (3.2) and (2.3),

$$
\begin{align*}
\nabla_{\mu}\left(a_{\lambda}\right)= & \stackrel{\partial a_{j}}{\partial y k} \stackrel{e}{e}_{\lambda}^{j} e_{\mu}^{k}-a_{i}\left(\nabla_{\mu} e_{j}^{\alpha}\right) \tag{3.11}\\
& e_{\alpha}^{i} e_{k}^{r} e_{\mu}^{k} e_{\lambda}^{j}
\end{align*}
$$

Making use of (1.3) and (2.2), we have (3.10).

Theorem 3.5. The covariant derivative of the holonomic contravariant vector may be expressed as following relation
(3.12) $\left(\nabla_{\mu} a^{y}\right)=\nabla_{k .}\left(a^{i}\right) e_{i}^{\nu} e_{\mu}^{k}$.

Proof. by means of the covariant derivative of the holonomic contravariant vector

$$
\nabla_{\mu}\left(a^{\nu}\right)=\frac{\partial a^{\nu}}{\partial x^{\mu}}+a^{\lambda}\left\{\begin{array}{c}
v \tag{3.13}\\
\lambda \mu
\end{array}\right\}
$$

From (1.5) and (2.4)b
(3.14.) $\nabla_{\mu}\left(a^{v}\right)=\frac{\partial}{\partial x^{\mu}}\left(a_{i}^{i} e_{i}^{v}\right)$

$$
+a^{j} e_{j}^{\lambda}\left[\left\{\begin{array}{c}
i \\
j, k
\end{array}\right\} e_{i}^{y} \stackrel{j}{e}_{\lambda}^{j} e_{\mu}^{k}+\left(\partial_{\mu} e_{\lambda}^{j}\right) e_{j}^{v}\right.
$$

Using (2.2) and (3.1)

$$
\begin{align*}
\nabla \nabla_{\mu}\left(a^{\nu}\right) & =\frac{\partial a^{i}}{\partial y^{k}} e_{i}^{v} e_{\mu}^{k}+a^{i}\left\{\begin{array}{c}
i \\
j k
\end{array}\right\} e_{i}^{\nu} e_{\mu}^{k} \tag{3.15}\\
& +a^{i}\left(\frac{\partial}{\partial y^{k}} e_{i}^{v}\right) e_{\mu}^{k}-a^{j}\left(\partial_{\mu} e_{j}^{\nu}\right)
\end{align*}
$$

By virtiue of (1.3)
(3.16) $a^{i}\left(\frac{\partial}{\partial y^{k}} e_{i}^{\nu}\right) e_{\mu}^{k}=a^{j}\left(\partial_{\mu} e_{j}^{v}\right)$.

We obtain

$$
\begin{align*}
& \text { (3.17) } \nabla_{\mu}\left(a^{\nu}\right) \frac{\dot{\partial} a^{i}}{\partial y^{k}} e_{i}^{v} e_{\mu}^{k}+a^{j}\left\{\begin{array}{c}
i \\
j k
\end{array}\right\} e_{i}^{v} e_{\mu}^{k} \tag{3.17}\\
& =\nabla_{\mu}\left(a^{i}\right) e^{y} e_{\mu}^{k}
\end{align*}, \text { where } \nabla_{k},\left(a^{i}\right)=\frac{\partial a^{i}}{\partial y^{k}}+a^{j}\left\{\begin{array}{c}
i \\
j k
\end{array}\right\}, ~ l
$$

Theorem 3.6. We have the covariant derivative of the nonholonomic contravariant vector, as follows

$$
\begin{equation*}
\nabla_{k}\left(a^{i}\right)=\nabla_{\mu}\left(a^{\nu}\right) e_{v}^{i} e_{k}^{\mu} \tag{3.18}
\end{equation*}
$$

ℓ Proof. In order to prove (3.18), Multiplying ${ }_{\boldsymbol{e}}^{\boldsymbol{v}}{\underset{m}{e}}_{\boldsymbol{e}}$ to both sides of (3.18) and using (1.3).

$$
\begin{equation*}
\nabla_{\mu}\left(a^{\nu}\right) \stackrel{j}{e}_{v}^{j} e_{\ell}^{\mu}=\Gamma_{\ell}(a) . \tag{3.19}
\end{equation*}
$$

Replacing j by i and ℓ by k, we have (3.18).
Corollary 3.7. We have

$$
\begin{equation*}
\nabla_{\mu}\left(a^{\nu}\right)=\frac{\partial a^{v}}{\partial x^{\mu}}-a^{i}\left(\nabla_{\mu}^{e^{v}}\right) \tag{3.20}
\end{equation*}
$$

Proof. Making use of (2.5) and (3.13), (3.20) may be written in the form

$$
\begin{align*}
\nabla_{\mu}\left(a^{\nu}\right) & =\frac{\partial a^{i}}{\partial x^{\mu}}+a^{j} \underset{j}{\lambda}\left(\nabla_{k} \stackrel{j}{e_{\mu}}\right) e_{\mu}^{k} e_{j}^{\nu} \tag{3.21}\\
& =\frac{\partial a^{v}}{\partial x^{\mu}}-a^{j}\left(\nabla_{\mu} e_{j}^{\nu}\right) .
\end{align*}
$$

Replacing i by j ，we obtain（3．20）．

Corollary 3．8．We have

$$
\begin{equation*}
\nabla_{\mu}\left(a^{v}\right)=\frac{\partial a^{i}}{\partial y^{k}} e^{v} e_{\mu}^{k}+a^{i}\left(\nabla_{\mu} e^{v}\right) \tag{3.22}
\end{equation*}
$$

Proof．（3．23）can be also obtained from （3．17）by making use of（2．3）as follows
（3．23）$\nabla_{\mu}\left(a^{\nu}\right)=\frac{\partial a^{i}}{\partial y^{k}} e^{\nu} e_{\mu}^{k}+a^{j}\left(\nabla_{\mu} e^{\nu}\right)$

By means of（1．3）and the properties of the Kronecker deltas，obtained（3．22）．

Literature citea

［1］C．E．Weatherburn．1957．An Introduction to Riemannian Goometry and the Tensor calculus．Cambridge University Press
［2］J．C．H．Gerretsen．1962．Lectures on Tensor calculus and Differential Geometry．P． Noordhoff N．V．Groningen．
［3］Chung K．T．\＆Hyun J．O．1976．On the Nonholonomic Frames of V_{n} ．Yonsei Nonchong．Vol． 13.
［4］Hyun J．O．\＆Kim H．G．1981．On the Christoffel Symbols of the Nonholonomic Frames in V_{n} ．
［5］Hyun J．O．\＆Bang E．S．1981．On the Nonholonomic Components of the Christof－ fel Symbols in $\mathrm{V}_{\mathrm{n}}(1)$ ．
［6］Hyun J．O．\＆Kang T．C．1983．A note on the Nonholonomic Self－Adjoint in V_{n} ．

图 文 抄 錄

Nonholonomic vector들의 derivative 에 관한 성질은 이미 발표된바 있다．본 논문에서는 No－ nholonomic Tensor 들의 성질을 Nonhnlonomic vector 와 Nonholonomic 정의 및 Holonomic Tensor 들의 성질을 이용하여 보다 새로운 결과들을 얻으므로서 n －차원 Riemann 공간 V_{n} 을 다 른 각도에서 구성하고 연구할 수 있는 기초 이론을 정립코자 한다．

[^0]: （＊＊）Throughout the present paper，Greek indices take values $1,2, \cdots, n$ unles expli－ citly stated otherwise and follow the summation convention，while Roman indices are used for the nonholonomic componts of a tensor and run from 1 to n ．Roman indices also follow the summation convention．

