The Isomomorphism of Relative Ideals

Hyun Jin-oh, Ko Youn-hee

상대적 Ideals 의 동형사상

玄進五・高胤熙

Introduction

In [1] J.M. Howie has explained the basic properties of semigroup and studied the congruence on a semigroup and proved the isomorphism of the quotient set of a semigroup by the congruence relation.

In [2] T.K. Dutta has defined the relative ideal and studied the properties of relative ideal.

Now we will review the properties of a semigroup and relative ideal. And we will apply the isomorphism of the quotient set of a semigroup by the congruence relation to the isomorphism of the quotient set of relative ideal by the Rees congruence relation.

I. Definitions and Preliminarlies

Definition (1-1). We will say that (S, \cdot) is a semigroup if (xy)z = x(yz) for any $x,y,z, \in S$.

Definition (1-2). If a semigroup (S, \cdot) has the additional property that xy = yx for any $x,y \in S$, it is called a commutative semigroup.

Definition (1.3). If a semigroup (S, \cdot) has an element 1 such that x1 = 1x for any $x \in S$, 1 is called an identity (element) of S and S is called a semigroup with identity, or monoid.

Definition (1-4). If A and B are subsets of a

semigroup, we write $AB = \{ab:a \in A, b \in B\}$ and $\{a\}B = a\ B = \{ab:b \in B\}$ for $a \in S$.

Definition (1-5). If (S, \cdot) is a semigroup, then a nonempty subset T of S is called a subsemigroup of S if $xy \in T$ for any $x,y \in T$.

Definition (1-6). A nomempty subset A of a semigroup S is called a left ideal if SA⊆A, a right ideal if AS⊆A, and an idela if it is both a left and right ideal.

Definition (1-7). If x is a nonempty set, then a subset ρ of X × X is called a relation on X. X × X is called a universal relation and $1x = \{(x,x):x \in X\}$ is called the equality relation.

Definition (1-8). Let $\beta(S)$ be the set of all relations on X and let ρ , $\sigma \in \beta(X)$. Then we define a binary operation on $\beta(X)$ as follows; if ρ , $\sigma \in \beta(X)$, then $\rho \circ \sigma = \{(x,y) \in X \times X : \exists z \in X \ni (x,y) \in \rho \text{ and } (z,y) \in \sigma \}.$

Definition (1-9). $\rho^{-1} = \{(x,y) \in X \times X : (y,x) \in \rho \}$ is called the inverse of ρ

Definition (1-10). A relatin ρ is called an equivalence relation if (i) $(x,x) \in \rho$ for every $x \in X$: reflexive (ii) $\rho = \rho^{-1}$: symmetric (iii) $\rho \circ \rho \subseteq \rho$: transitive.

Definition (1-11). $X/\rho = \{x \ \rho : x \in X\}$ is called the quotient set with an equivalence $\rho \cdot \rho^{\#}$ is called the natural mapping from X onto X/ρ defined by $x \ \rho^{\#} = x \rho$ for any $x \in X$.

- **Definition** (1-12). Let (S,\cdot) be a semigroup. A relation R on S is called left compatible if $(s,t) \in \mathbb{R}$ \Rightarrow (as, at) $\in \mathbb{R}$ and right compatible if $(s,t) \in \mathbb{R}$
- ⇒ (sa, ta)∈R for any s,t,a∈S. R is called compatible if (s,s')∈R and (t,t')∈R ⇒ (st,s't')∈R for any s,t,s't'∈S. A compatible equivalence relation is called a congruence.
- **Proposition (1-13).** Let S be a semigroup and let ρ be a congruence on as emigroup S. Then $S/\rho = \{x\rho : x \in S\}$ is a semigroup.
- **Definition** (1-14). If ϑ is a mapping from a semigroup (S,\cdot) into a semigroup (T,\cdot) we say that ϑ is a homomorphism if $(xy)\vartheta = (x\vartheta)$ $(y\vartheta)$ for any $x,y\in S$. We refer to S as the domain of ϑ , to T as the codomain of ϑ , and to the subset $S\vartheta = \{s\vartheta: s\in S\}$ of T as the range of ϑ . If ϑ is one-one we shall call it a monomorphism, and if it is both one-one and onto we shall call it an isomorphism. Ker $\vartheta = \vartheta \cdot \vartheta^{-1} = \{(a,b)\in S\times S: a\vartheta = b\vartheta\}$.
- **Proposition** (1-15). If ρ is a congruence on a semigroup S, then S/ρ is a semigroup w.r.t the operation $(a\rho)$ $(b\rho) = (ab)\rho$ and the mapping ϕ :S defined by $x\rho^{\#} = x\rho$ for any $x \in S$ is a homomorphism. If $\phi:S \to T$ is a homomorphism, where S and T are semigroups, then the relation $\ker \phi = \phi \cdot \phi^{-1} = \{(a,b) \in S \times S : a\phi = b\phi\}$ is a congruence on S and there is a monomorphisms $\alpha:S/\ker \phi \to T$ such that $\operatorname{ran}(\alpha) = \operatorname{ran}(\phi)$ and the diagram commutes.
- **Proposition** (1-16). Let ρ be a congruence on a semigroup S. If $\phi: S \to T$ is a homomorphism such that $\rho \subseteq \text{Ker } \phi$ then there is a unique homomorphism $\beta: S/\rho \to T$ such that ran $(\beta) = \text{ran } (\phi)$ and the diagram commutes.
- **Proposition** (1-17). Let ρ , σ be congruences on a semirgroup S such that $\rho \subseteq \sigma$. Then $\sigma/\rho = \{(x\rho, y\rho) \in S/\rho \times S/\rho : (x,y) \in \sigma\}$ is a congruence on S/ρ , and $(S/\rho)/(\sigma/\rho) \simeq S/\sigma$.

II. Relative Ideal for Semigroup

Definition (2-1). Let S be a semigroup and T be a subsemigroup of S. A nonempty subset A of S is called a left T-ideal if TA⊆A. The right T-ideal

- is defined anlogously. A nomempty subset A of S is called a T-ideal if it is both left and right T-idea.
- **Example (2-2).** Let M_2 be the set of all 2×2 nonsingular metrices over the field of rational numbers. Then M_2 is a group w.r.t matrix multiplication. Let $T = \begin{pmatrix} a & o \\ o & b \end{pmatrix}$: a, b are integers M_2 and M_3 : e,f,g,h are even integers M_3 . Then M_3 is a left M_3 -ideal as well as a right M_3 -ideal of M_3
- Remark (2-3). Let S be a semigroup. Then every ideal in S is a S-idal.
- **Proposition** (2-4). Let S be a semigroup and A be a left (right) T_1 -ideal and a left (right) T_2 -ideal with $T_1 \cap T_2 \neq \emptyset$. Then A is also a left (right) $T_1 \cap T_2$ -ideal.
- **Proof:** Let $x,y \in T_1 \cap T_2$. Then $x,y \in T_1$ and $x,y \in T_2$. Thus $xy \in T_1$ and $xy \in T_2$ and $T_1 \cap T_2$ is a subsemigroup of S. Since $(T_1 \cap T_2)A \subseteq T_1A \subseteq A$, so A is a left $T_1 \cap T_2$ ideal. In right case we can easily prove.
- Corollary (2-5). Let S be a semigroup and let A be a T_1 -ideal and T_2 -ideal with $T_1 \cap T_2 \neq \emptyset$ Then A is a $T_1 \cap T_2$ -ideal.
- **Proposition (2-6).** Let S be a semigroup and let A be a left T_1 -ideal and right T_2 -ideal with $T_1 \cap T_2 \neq \phi$ Then A is a $T_1 \cap T_2$ -ideal.
- **Proof:** Since $T_1 \cap T_2$ is a subsemigroup and $A(T_1 \cap T_2) \subseteq AT_2 \subseteq A$ and $(T_1 \cap T_2)A \subseteq T_1A \subseteq A$. By the definition A is a $T_1 \cap T_2$ -ideal.
- **Proposition (2-7).** Let S be a semigroup and let A and B be a left (right) T -ideal. Then $A \cap B$ and $A \cup B$ are also left (right) T -ideals.
- **Proof:** Since $TA \subseteq A$ and $TB \subseteq B$, so $T(A \cap B) \subseteq TA \subseteq A$ and $T(A \cap B) \subseteq TB \subseteq B$. Thus $T(A \cap B) \subseteq A \cap B$. If $x \in T(A \cup B)$, $\exists t \in T$, $a \in A \cup B$, $\cdot \ni \cdot x = ta$. Here if $a \in A$, then $x = ta \in TA$ and if $a \in B$, then $x = ta \in TB$. Thus $T(A \cup B) \subseteq (TA) \cup (TB)$ and $TA \subseteq A$ and $TB \subseteq B$. Hence $T(A \cup B) \subseteq (TA) \cup (TB)$. In right case we can complete the proof (by same method).
- Corollary (2-8). Let S be a semigroup and let A and B be a T-ideals. Then A∩B and A∪B are also T-ideals
- Remark (2-9). Let S and T be semigroup. Then the

direct product $S \times T = \{(s,t) : s \in S, t \in T\}$ is a semigroup for (s,t)(s',t') = (ss',tt'). Now we can define $(S \times T) (A \times B) = SA \times TB$ and $(A \times B)$ $(S \times T) = AS \times BT$, where A and B are subsets of S and T, respectively. If A and B are subsemigroups of S and T, respectively, then $A \times B$ is a subsemigroup of $S \times T$. And let A and B be left (right) ideal of S and T, respectively, then $A \times B$ is a left (right) ideal of $S \times T$. Furthermore let S and U be semigroup and let T,V be subsemigroup of S and U, respectively and let A be a T-ideal and B be a V-ideal. Then A×B is a $T \times V$ -ideal in $S \times U$.

Definition (2-10). A semigroup S is said to have the properties α,β or ρ if the relation $L \cap L_2 = L_1L_2$, $R_1 \cap R_2 = R_1 R_2$ or $L_1 \cap R_1 = L_1 R_1$ hold for left Tideals L1, L2 and right T-ideals R1, R2 of S.

Lemma. Let S be a semigroup having property ρ (a or B) and T be a subsemigroup of S. Then T is a normal subsemigroup of S.

Proposition (2-11). Let M is a monoid having property ϱ (α or β) and T be a subsemigroup with identity of M. Then $\{mT : m \in M\}$ is a monoid.

Proof: Consider an operation as follow (mT)(nT) = mnT for any $m,n \in M$. Then the operation is well defined since T is a normal subsemigroup of M and T has an identity. And associative property is evident since M is associative. Now eT = T is an identity in $\{mT : mT\}$ $m \in M$ }, where e is an identity in M. Hence {mT : m M} is a monoid.

Proposition (2-12). Let I be a T-ideal and a subsemigroup of a semigroup S and let $I \cup T$ be a subsemigroup of S. Then $\rho_I^{TUI} = (IXI) \cup 1_{TUI}$ is a congruence on TUI.

Proof: For any $x \in T \cup I$ $(x,x) \in I_{T \cup I} \subseteq \rho_I^{T \cup I}$. If $(a,b) \in \rho_I^{TUI}$, then $(a,b) \in I \times I$ or $(a,b) \in I_{TUI}$. Thus $(b,a) \in I \times I$ or $(b,a) \in I_{TUI}$, that is, $(b,a) \in \rho_I^{TUI}$ If $(a,b) \in \rho_I^{TUI}$ and . $(b,c) \in \rho_I^{TUI}$, then $(a,b) \in I \times I$ or $(a,b) \in I_{TUI}$ and $(b,c) \in I \times I$ or $(b,c) \in I_{TUI}$. Thus $(a,c) \in \rho_I^{TUI}$ for every case. If $(a,b) \in \rho_1^{TUI}$ and $(a',b') \in \rho_1^{TUI}$, then $(aa',bb') \in \rho_1^{TUI}$ since I is a subsemigroup of S and I is a T-ideal. Hence

 ρ , TUI is a congruence on TUI.

Remark (2-13). Let S be a semigroup and I be a Tideal and let I
T. Then I is a subsemigroup of S and $T \cup I = T$ is a subsemigroup of S. Thus $\rho_{I}^{TUI} = \rho_{I}^{T}$ is a congruence on T. Furthermore let I be an ideal of S. Then I is a S-ideal since we can take T to be S. Thus ρ_T is a congruence on S.

Proposition (2-14). Let I be a T-ideal and a subsemigroup of a semigroup S and let TU I be a subsemigroup of S. Then T^{UI}/ρ_1^{TUI} is a semigroup with zero element I and $^{TUI}/\rho_I^{TUI}$ = $\{I\} \cup \{\{x\} : x \in (T \cup I) - I\}.$

Proof: By Proposition 1.13. TUI/P, TUI is a semigroup of the quotient sets with operation $(x \rho_I^{TUI})(y \rho_I^{TUI}) = xy \rho_I^{TUI}$. Now we must show that I is a zero element in TUI/ρ_1 and TUI/ρ_2 TUI = $\{I\}u \{\{x\}: x \in (T \cup I) - I\} \cdot \text{For any } x, y \in I\}u \{\{x\}: x \in T \cup I\}u \{\{x\}: x \in T$ $I \times \rho_1^{TUI} = I$ and $y \rho_1^{TUI} = I$. Here $(x \rho_1^{TUI})$ $(y \rho_t^{TU1}) = (xy) \rho_t^{TU1} = I \text{ since } x \text{ and } y \text{ belong}$ to I. And if $x \in (T \cup I) - I$ and $y \in I$, then $x \rho_I^{TUI} = \{x\}$ and $\{x\} I = (x \rho_I^{TUI}) (y \rho_I^{TUI})$ $=xy\rho_1^{TUI}=I$ and $I\{x\}=I$ for any $y\in I$. That is, $\alpha I = \alpha I = I$ for any $\alpha \in T^{UI}/\rho_1^{TUI}$. Second $TUI / \rho_I TUI = \{I\} \cup \{\{x\}: x \in (T \cup I) - I\}.$ By the definition $T^{UI}/\rho^{T^{UI}} = \{x\rho_I^{T^{UI}} : x \in I^{T^{UI}}\}$ TUI). Here if $x \in I$, then $x \rho_I^{TUI} = I$ since $\rho_{\mathbf{I}}^{\mathbf{TUI}} = (\mathbf{IxI}) \cup \mathbf{1}_{\mathbf{TUI}}$ and if $\mathbf{x} \not\in \mathbf{I}$, then $\mathbf{x} \rho_{\mathbf{I}}^{\mathbf{TUI}}$ =x. Thus Thus $TUI/\rho_1^{TUI} = \{I\} \cup \{x\} : x \in$ (TUI)-I.

Proposition(2-15). Let I, J be T-ideal of a semigroup S such that $I \subseteq J \subseteq T$. Then $T/\rho_I^T \simeq (T/\rho_I^T)/(\rho_I^T/\rho_I^T)$.

Proof: Define β as follows; $(a \rho_I^T) \beta = a \rho_I^T$ for any $a \in T$. Then $((a \rho_l^T)(b \rho_l^T)) \beta = (ab$ ρ_{I}^{T}) $\beta = ab \rho_{I}^{T} = (a \rho_{I}^{T}) (b \rho_{I}^{T}) = (a \rho_{I}^{T}) \beta$ $(b\rho_1^T)\beta$. And Ker $\beta = \beta o\beta^{-1} = \{(a\rho_1^T, b\rho_1^T)\}$ $\in T/\rho_l^T \times T/\rho_l^T : (a \rho_l^T) \beta = (b \rho_l^T) \beta =$ $\{(a \rho_I^T, b \rho_I^T) \in T / \rho_I^T \times T / \rho_I^T : a \rho_I^T = b \rho_I^T\}$ $= \rho_1^T / \rho_1^T$. Now we define α as follow $\{(a \rho_I^T) \rho_I^T / \rho_I^T\} \alpha = a \rho_I^T$. Hence $\alpha: (T/\rho_l^T)/(\rho_J^T/\rho_l^T) \rightarrow T/\rho_l^T$ is an isomorphism.

Literature cited

- Howie, J.M. 1976 An introduction to semigroup theory, Academic Press.
- Dutta, T.K. 1982 Relative ideals in groups, Kyungpook Math. J. 22.
- Allen, P.J. 1969 A fundamental theorem of homomorphism for semiring, Proc. Amer. Math. Soc. 21.

國文抄錄

본 논문에서는 Congruence 관계에 의한 반군들의 Quotient 집합에 대한 동형을 Rees Congruence 관계에 의한 상대적 Ideals의 Quotient 집합에 적용시켜 보았다.