Structural Analysis of Nonsquare Matrices Using Permanent Theory

Song Seok－zun＊
퍼머넨트 理瑲에 의한 行列의 雱造 分析

宋 鍚 準＊

Summary

Many studies of permanents theory are related on doubly stochastic n－square matrices．In this paper，we define a partial doubly stochastic $m \times n$ ．matrices and analyze the structures of such matrices and their permanents．And we investigate the structures of fully indecomposable $m \times n$ matrices，partly decomposable $m \times n$ matrices and contraction matrices of partial doubly stochastic matrices．

1．Introduction and preliminaries

Many studies on permanents theory are related on doubly stochastic n－square ma－ trices．In this paper，we define a partial doubly stochastic $m \times n$ matrices and investigate such matrices．

Let $A=\left(a_{i j}\right)$ be an $m \times n$ matrix over any commutative ring．$m \leqslant n$ ．The permanend of A ， written $\operatorname{Per}(A)$ ，is defined by

$$
\operatorname{Per}(\mathrm{A})=\sum_{\sigma} \mathrm{a}_{1 \sigma(1)} \mathrm{a}_{2 \sigma(2)} \cdots \cdots \mathbf{a}_{\mathrm{m} \sigma}(\mathrm{~m})
$$

where the summation extends over all one－to－one functions from $\{1, \cdots, m\}$ to $\{1$ ， $\cdots, n)$ ．The sequence $\left(a_{1 \sigma(1)}, \cdots, a_{m \sigma(m)}\right)$ is called a diagonal of A．

Let $\Gamma_{r, n}$ denote the set of all n^{r} sequences $\mathrm{w}=\left(\mathrm{w}_{1}, \cdots, \mathrm{w}_{\mathrm{r}}\right)$ of integers， $1 \leqslant \mathrm{w}_{\mathrm{i}} \leqslant \mathrm{n}, \mathrm{i}=1$ ， \cdots, n ．Let $Q_{\mathrm{r}, \mathrm{n}}$ denote the subset of $\Gamma_{\mathrm{r}, \mathrm{n}}$ consisting of all increasing sequences，

$$
Q_{r, n}=\left\{\left(w_{1}, \cdots, w_{r}\right) \cong \Gamma_{r, n}: 1 \leqq w_{l}\left\langle\cdots\left\langle w_{r} \leqq n\right\}\right.\right.
$$

Let $A=\left(a_{i j}\right)$ denote the $m \times n$ matrix with entries from real numbers and let $\alpha \in Q_{h, m}$ and $\beta \in \mathrm{Q}_{\mathrm{k}, \mathrm{n}}$. Then $\mathrm{A}[\alpha: \beta]$ denotes the $\mathrm{h} \times \mathrm{k}$ submatrix of A whose (i, j) entry is $\mathrm{a}_{\alpha_{\mathrm{i}} \mathrm{p}_{\mathrm{j}}}$ And $A(\alpha \mid \beta)$ denotes the $(m-h) \times(n-k)$ submatrix of A complementary to $\mathrm{A}[\alpha \mid \beta]$ - that is, the submatrix obtained from A by deleting rows α and columns β. The other definitions are refered to (4] "Permanents".

In this paper, we analyze the structures of fully indecomposable $m \times n$ matrices and partly decomposable $m \times n$ matrices. In particular, we define doubly $c(k)$-stochastic $\mathrm{m} \times \mathrm{n}$ matrices and investigate such matrices.
we assume that $\mathrm{m} \leqslant \mathrm{n}$ for all $\mathrm{m} \times \mathrm{n}$ matrices in this paper.

2. The structure and permanents of doubly $c(k)$-stochastic $m \times n$ matrices.

DEFINITION 1. A nonnegative $m \times n$ matrix is called doubly $c(k)$-stochastic if all its row sums and k column sums are 1 but its remaining ($n-k$) column sums are $\frac{m-k}{n-k}$ for some $0 \leqslant k<m$ $\leq \mathrm{n}$. If $\mathrm{m}=\mathrm{n}$, a doubly $\mathrm{c}(\mathrm{n})$-stochastic matrix is called a doubly stochastic matrix.

For examples, let
$\mathrm{A}=\left[\begin{array}{cccc}\frac{1}{6} & \frac{1}{3} & \frac{1}{6} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{1}{2} & 0 & \frac{1}{2} & 0\end{array}\right], \mathrm{B}=\left[\begin{array}{cccc}\frac{1}{8} & \frac{3}{8} & \frac{1}{8} & \frac{3}{8} \\ \frac{2}{8} & \frac{3}{8} & 0 & \frac{3}{8} \\ \frac{3}{8} & 0 & \frac{5}{8} & 0\end{array}\right]$

Then A is a doubly $c(1)$-stochastic 3×4
matrix and B is a doubly $\mathrm{c}(0)$-stochastic 3×4 matrix.

DEFINITION 2. ((4)) A nonnegative $m \times n$ matrix A is called fully indecomposable if $\operatorname{Per}(A(i \mid j))>0$ for $i=1, \cdots, m$, and $j=1, \cdots$, n . Otherwise, A is called parlly decomposable.

THEOREM 1. ([4]) Let A be a nonnegative $m \times n$ matrix. Then $\operatorname{Per}(A)=0$ if and only if A contains an $s \times(n-s+1)$ zero submatrix. (Extended version of Frobenius and König Theorem)

LEMMA 2. An $m \times n$ matrix A is partly decomposable if and only if there exist permutation matrices P and Q of orders m and n respectively, such that

$$
\mathrm{PAQ}=\left[\begin{array}{cc}
\mathrm{B} & C \tag{1}\\
0 & D
\end{array}\right]_{\mathrm{m} \times \mathrm{n}}
$$

where 0 is an $s \times(n-s)$ submatrix ($s \geq 1$).
Proof. If A is an $m \times n$ partly decomposable matrix, then there exist i and j such that $\operatorname{Per}(A(i \mid j))=0$. By Theorem 1, $A(i \mid j)$ contains an $s \times((n-1)-s+1)$ zero submatrix. Hence A contains an $s \times(n-s)$ zero submatrix.

Now, assume that there exist permutation matrices P and Q of orders m and n respectively such that PAQ is of the form (1). Let (i, j) be a position in the submatrix C of PAQ. Then $(m-1) \times(n-1)$ matrix $\mathrm{PAQ}(\mathrm{i} \mid \mathrm{j})$ contains an $\mathrm{s} \times((\mathrm{n}-1)-\mathrm{s}+1)$ zero submatrix. By Theorem 1, $\operatorname{Per}(\operatorname{PAQ}(\mathrm{j} \mid \mathrm{j}))=0$ and hence $\operatorname{Per}(\mathrm{A}(\mathrm{i} \mid \mathrm{j}))=0$. Therefore A is a partly decomposable $\mathrm{m} \times \mathrm{n}$ matrix.

THEOREM 3. If an $m \times n$ matrix A is partly decomposable doubly $c(k)$-stochastic ($k>0$), then there exist permutation matrices P and Q of orders m and n respectively such that PAQ is a direct sum of an s -square doubly
stochastic matrix and an (m-s) $\times(\mathrm{n}-\mathrm{s})$ doubly $\mathrm{c}(\mathrm{k}-\mathrm{s})$-stochastic matrix.

Proof. Since A is partly decomposable, for some permutation matrices P and Q of orders m and n respectively, Lemma 2 implies that PAQ is of the form (1) in Lemma 2. Since PAQ is doubly $c(k)$-stochastic, the sum of entries in last s rows of PAQ is s and hence

$$
\sigma(\mathrm{D})=\mathrm{s}
$$

Where $\sigma(\mathrm{X})$ denotes the sum of entries in the matrix X. Since D is s-square and nonnegative, the sum of every column in D is 1 and hence $s \leq \mathrm{k}$. Similarly, considering the entries in the first $n-s$ columns of doubly $c(k)$-stochastic matrix PAQ. we can conclude that

$$
\sigma(B) \geq \frac{m-k}{n-k} \times(n-k)+1 \times(k-s)=m-s
$$

But

$$
\begin{aligned}
\mathrm{m} & =\sigma(\mathrm{PAQ})=\sigma(\mathrm{B})+\sigma(\mathrm{C})+\sigma(\mathrm{D}) \\
& \geq(\mathrm{m}-\mathrm{s})+\sigma(\mathrm{C})+\mathrm{s}=\mathrm{m}+\sigma(\mathrm{C})
\end{aligned}
$$

and therefore

$$
\sigma(\mathrm{C}) \leq 0 .
$$

Since C is nonnegative, we must have

$$
C=0
$$

and thus

$$
\mathrm{PAQ}=\mathrm{B} \oplus \mathrm{D}
$$

where D is an s-square doubly stochastic matrix and B is an (m-s) $\times(n-s)$ doubly $\mathrm{c}(\mathrm{k}-\mathrm{s})$-stochastic matrix.

THEOREM 4. A doubly $c(0)$-stochastic $\mathrm{m} \times \mathrm{n}$ matrix is fully indecomposable if $\mathrm{m}\langle\mathrm{n}$.
Proof. Let A be a doubly $c(0)$-stochastic $\mathrm{m} \times \mathrm{n}$ matrix with $\mathrm{m}<\mathrm{n}$. Assume that A is not fully indecomposable. Then there exist permutation matrices P and Q of orders m and n respectively such that PAQ is of the form (1). Since the sum of entries in the last s rows is s and the nonzero entries in them are all in the submatrix D, we have

$$
\sigma(\mathrm{D})=\mathrm{s} .
$$

Sincc A is doubly $c(0)$-stochastic and nonneqative. the sum of entries in the last k columns is greater than or equals to the sum of entries in the submatrix D. Hence

$$
\frac{\mathrm{m}}{\mathrm{n}} \times \mathrm{s} \geq \sigma(\mathrm{D})=\mathrm{s} .
$$

Therefore $m \subset n$, which is impossible. Hence A is fully indecomposable if $m<n$.

THEOREM 5. The permanent of a doubly $c(k)$-stochastic $m \times n$ matrix is positive.

Proof. If $\operatorname{Per}(\mathrm{A})=0$, then by Theorem 1 , there exist permutation matrices P and Q such that PAQ is of the form (1), where the zero submatrix is $s \times(n-s+1)$ matrix. Since A is a doubly $c(k)$-stochastic $m \times n$ matrix. we have
$\mathrm{m}=\sigma(\mathrm{PAQ})=\sigma(\mathrm{B})+\sigma(\mathrm{D})$
Now, all the nonzero entries in the last s rows are contained in D and thus

$$
\sigma(\mathrm{D})=\mathrm{s} .
$$

This implies that $s \leq k$. Similarly, all the nonzero entries in the first ($\mathrm{n}-\mathrm{s}+1$) columns are contained in B and thus

$$
\begin{aligned}
\sigma(\mathrm{B}) \geq & \frac{\mathrm{m}-\mathrm{k}}{\mathrm{n}-\mathrm{k}} \times(\mathrm{n}-\mathrm{k})+1 \times((\mathrm{n}-\mathrm{s}+1)-(\mathrm{n}-\mathrm{k})) \\
& =(\mathrm{m}-\mathrm{k})+(\mathrm{k}-\mathrm{s}+1)=\mathrm{m}-\mathrm{s}+1
\end{aligned}
$$

But
$\mathrm{m} \geq o(\mathrm{~B})+\sigma(\mathrm{D}) \geq(\mathrm{m}-\mathrm{s}+1)+\mathrm{s}=\mathrm{m}+1$
which is impossible.
COROLLARY 6. Every doubly $c(k)$-stochastic matrix has a positive diagonal.

LEMMA 7. If A is a fully indecomposable $m \times n$ matrix and $c>0$, then for every i and j,

$$
\operatorname{Per}\left(A+c E_{i j}\right)>\operatorname{Per}(A)
$$

where $E_{i j}$ denotes the $m \times n$ matrix with 1 in the (i, j) position and zeros elsewhere.

Proof. Using the expansion theorem for permanents, we have

$$
\begin{gathered}
\operatorname{Per}\left(A+c E_{i j}\right)=\sum_{j=1}^{N} a_{i j} \operatorname{Per}\left(\left(A+c E_{i j}\right)(i \mid j)\right) \\
=\operatorname{Per}(A)+c \operatorname{Per}(A(i \mid j)) .
\end{gathered}
$$

Since A is fully indecomposable,
$\operatorname{Per}(A(i \mid j))>0$ for all i and j. Hence we have the result.

THEOREM 8. If an $m \times n$ matrix A is a fully indecomposable (0,1)-matrix, then

$$
\operatorname{Per}\left(A+\sum_{t=1}^{E_{i}} E_{t} i_{t}\right) \geqq \operatorname{Per}(A)+r .
$$

Proof. Since A is a (0,1)-matrix, definition 2 implies that $\operatorname{Per}(A(i \mid j)) \geq 1$ for all i and j. Therefore,

$$
\begin{aligned}
& \operatorname{Per}\left(A+E_{i_{i, j}}\right)=\operatorname{Per}(A)+\operatorname{Per}\left(A\left(i_{i} \mid j_{i}\right)\right) \\
& \quad \geqq \operatorname{Per}(A)+1
\end{aligned}
$$

by lemma 7. Clearly $A+E_{i, j}$, is fully indecomposable. The result now follows by induction on r .

THEOREM 9. Let

$$
A=\left[\begin{array}{lllll}
A_{1} & B_{1} & 0 & \cdots & 0 \tag{2}\\
0 & A_{2} & B_{2} & & \vdots \\
\vdots & & \ddots & \ddots & \\
0 & 0 & & A_{r-1} & B_{r-1} \\
B_{r} & 0 & \cdots & 0 & A_{r}
\end{array}\right]_{m \times n}
$$

be a nonnegative $m \times n$ matrix, where A_{i} is a fully indecomposable $m_{1} \times n_{i}$ matrix, $i=1, \cdots$, r, and $B_{i} \neq 0, i=1, \cdots$. r. Then A is fully indecomposable.

Proof. Suppose that A is partly decomposable-i.e., that $A[\alpha \mid \beta]=0$ for some $\alpha \in Q_{s, m}$ and $\beta \in Q_{L . n}$, where $s+t=n$. Let s_{j} of rows α and t_{j} of columns β intersect the submatrix $A_{j}, j=1, \cdots, r$. Then $s_{1}+s_{2}+\cdots+s_{T}$ $=s>1$. so that at least one of the s_{j} must be positive. Similarly, at least one of the t_{j} is not zero. Now, since each A_{j} is fully indecomposable and it contains an $s_{j} \times t_{j}$ zero submatrix (unless either $s_{j}=0$ or $t_{j}=0$), we must have $s_{j}+t_{j} \leqslant n_{j}$, where equality can hold only if $s_{j}=0$ or $t_{j}=0$. But

$$
\begin{aligned}
n= & s+t=\sum_{j=1}^{r} s_{j}+\sum_{j=1}^{r} t_{j}=\sum_{j=1}^{r}\left(s_{j}+t_{j}\right) \\
& \leq \sum_{j=1}^{r} n_{j}=n
\end{aligned}
$$

and thus $\mathrm{s}_{\mathrm{j}}+\mathrm{t}_{\mathrm{j}}=\mathrm{n}_{\mathrm{j}}$ for every j . It follows that either $s_{j}=0$ or $t_{j}=0$ for $j=1, \cdots$, r. But not all the s_{j} nor all the t_{j} can be zero, and therefore there must exist an integer k such that $s_{k}=n_{k}$ and $t_{k+1}=n_{k+1}$ (subscripts reduced modulo r). It follows that B_{k} is a submatrix of a zero submatrix, contradicting our hy-
pothesis.

THEOREM 10. A fully indecomposable $\mathrm{m} \times \mathrm{n}$ matrix A has a row stochastic matrix which has the same zero pattern as A .

Proof. Since A is fully indecomposable. $\operatorname{Per}(A(i \mid j))>0$ for all i, j, by definition 2. Let $\mathrm{S}=\left(\mathrm{s}_{\mathrm{ij}}\right)$ be the $\mathrm{m} \times \mathrm{n}$ matrix defined by

$$
s_{i j}=a_{i j} \operatorname{Per}(A(i \mid j)) / \operatorname{Per}(A)
$$

$\mathrm{i}=1, \cdots, \mathrm{~m}$ and $\mathrm{j}=1 . \cdots, \mathrm{n}$. Clearly S is nonnegative, and it has the same zero pattern as A. Also for $\mathrm{i}=1, \cdots, \mathrm{~m}$,

$$
\begin{aligned}
\sum_{j=1}^{n} \mathbf{s}_{i j} & =\frac{1}{\operatorname{Per}(A)} \sum_{j=1}^{n} a_{i j} \operatorname{Per}(A(i \mid j)) \\
& =\frac{1}{\operatorname{Per}(A)} \operatorname{Per}(A)=1
\end{aligned}
$$

Hence S is row stochastic.
DEFINITION 3 ($(1,3\rceil)$. If column h of an $\mathrm{m} \times \mathrm{n}$ matrix A contains exactly two nonzero entries, say, in rows i and j, then the ($\mathrm{m}-1$) $\times(\mathrm{n}-1)$ matrix $\mathrm{C}(\mathrm{A})$ obtained from A by replacing row i with the sum of rows i and j and deleting row j and column h is called a contraction of A .

THEOREM 11. Let A be a nonnegative $m \times n$ matrix and let $C(A)$ be a contraction of A on columri h relative to rows i and j.
(i) If rows i and j each contain at least two positive entries, then A is fully indecomposable if and only if $C(A)$ is fully indecomposable.
(i) If A is a doubly $c(k)$-stochastic matrix such that $a_{i h}+a_{j h}=1, k \geq 1$, then $C(A)$
is a doubly $\mathrm{c}(\mathrm{k}-1)$-stochastic matrix.
Proof. It suffices to consider the case where $C(A)$ is the contraction of A on column 1 relative to rows 1 and 2 . Thus A and $C(A)$ have the form
$A=\left[\begin{array}{ll}a_{11} & U \\ a_{21} & v \\ 0 & B\end{array}\right]_{m \times n} \quad C(A)=\left[\begin{array}{c}U+V \\ B\end{array}\right]_{(m-1) \times(n-1)}$
where $a_{11} \neq 0 * a_{21}$.
(I) Suppose $C(A)$ is not fully
indecomposable. Then there exists an $s \times t$ zero submatrix $0_{s \times 1}$ of $C(A)$ where $s+t=n-1$. If $0_{s \times t}$ is a submatrix of B, then clearly A has an $s \times(t+1)$ zero submatrix where $s+(t+1)=n$. Hence in this case A is nof fully indecomposable. Suppose $0_{s \times t}$ is not a submatrix of B. Since a_{11} and a_{21} are positive while U and V are nonnegative, A has an $(s+1) \times t$ zero submatrix where $(s+1)+t=n$. Therefore A is not fully indecomposable.

Conversely, suppose A is not a fully indecomposable $m \times n$ matrix. Thus A contains an $s \times t$ zero submatrix $0_{s \times t}$ with $s+t=n$. If $0_{s \times t}$ is contained in the last $\mathrm{m}-2$ rows of A, then B, and thus $C(A)$, contains an $s+(t-1)$ zero submatrix with $\mathrm{s}+(\mathrm{t}-1)=\mathrm{n}-1$. Let $0_{\mathrm{s} \times \mathrm{t}}$ not be contained in the last $m-2$ rows of A. Then, since a_{11} and a_{21} are positive, $\mathrm{O}_{\mathrm{s} \times \mathrm{t}}$ is contained in the last $\mathrm{n}-1$ columns of A . Since rows 1 and 2 of A each contain at least two positive entries by assumption, $0_{s \times t}$ is a submatrix of neither U nor V. Hence $C(A)$ contains an ($s-1) \times t$ zero submatrix with $(s-1)+t=n-1$. Therefore $C(A)$ is not fully indecomposable.
(II) Since A is a doubly $c(k)$-stochastic matrix, the sum of entries in the first two
rows of A is 2 . If $a_{11}+a_{21}=1$ in A, then the sum of entries in the first row of $C(A)$, that is $\sigma(\mathrm{U}+\mathrm{V})$, is 1 . therefore $C(\mathrm{~A})$ is row stochastic. Since $C(A)$ is a contraction on the first column of $A, C(A)$ has only ($k-1$) columns such that the sums of their columns each are 1. And the sums of the other ($n-1$) $-(k-1)$ columns each are $\frac{m-k}{n-k}$, that is $\frac{(m-1)-(k-1)}{(n-1)-(k-1)}$. Hence $C(A)$ is a doubly $c(k-1)$-stochastic ($m-1$) $\times(\mathrm{n}-1)$ matrix.

Theorem 12. Let P and Q be m-and n-square (0. 1)-matrices respectively such that P has no zero rows and Q has no zero columns. Then
(1) if PAQ is partly decomposable for arbitrary $m \times n$ (0.1)-matrix A having a zero row, then P is a permutation matrix.
(2) if PAQ is partly decomposable for arbitrary $m \times n(0,1)$-matrix A having a zero column, then Q is a permutation matrix.
Proof. (1) Suppose PAQ is partly decomposable for every A with a zero row. Let A_{1} be the matrix all of whose entries equal 1 except those in the first row which equal 0 . Since Q has no zero columns, it follows that $A_{1} Q \geq A_{1}$. Let $P^{\prime}=P[\cdot,(2, \cdots$,
$m\}]_{m \times(m-1)}$ and let $A_{1}^{\prime}=A_{1}\{\{2, \cdots, m\}$, ${ }^{-]_{(m-1) \times n}}$ so that all entries of $A_{1}{ }^{\prime}$ equal 1 . Then

$$
P A_{1} Q \geq P A_{1}=P^{\prime} A_{1}^{\prime}
$$

Since $P A_{1} Q$ is partly decomposable, it now
follows that P^{\prime} has a zero row. Since P has no zero rows, we conclude that some row of P equals ($1,0, \cdots, 0$). By considering the matrix A_{i} all of whose entries equal 1 except those in row i which equal $0(\mathrm{i}=1, \cdots, m)$, we conclude in a similar way, that for each $i=1, \cdots, m$, some row of P contains only o's except for a 1 in column i. Hence P is a permutation matrix.
(2) Suppose PAQ is partly decomposable for every A with a zero column. Let A_{1} be the matrix all of whose entries equal 1 except those in the first column which equal 0 . Since P^{t} has no zero columns. it follows that
$A_{1}{ }^{1} P_{1}{ }^{t} \geq A_{1}{ }^{t}$. Let $\left(Q^{t}\right)^{\prime}=Q^{t}[\cdot, \quad\{2, \cdots$. $n\})_{n \times(n-1)}$ and let $\left(A_{1}\right)^{\prime}=A_{1}{ }^{t}\{\{2, \cdots n\}$. - $]_{(n-1) \times n}$ so that all entries of $\left(A_{1}\right)^{\prime}$ equal 1. Then

$$
Q^{t} A_{1} P^{t} \geq Q^{t} A_{1}{ }^{t}=\left(Q^{t}\right)^{\prime}\left(A_{1} t^{\prime}\right)^{\prime}
$$

Since $Q^{t} A_{1}{ }^{t}{ }^{t}$ is partly decomppsable, it now follows that $\left(Q^{2}\right)^{\prime}$ has a zero row. Since Q^{t} has no zero rows, we conclude that some row of Q^{t} equals $(1,0, \cdots, 0)$. By considering the matrix A_{i} all of whose entries equal 1 except in column j which equal 0 $(j=1, \cdots, n)$, we conclude in a similar way, that for each $j=1, \cdots$, n. some row of Q^{t} contains only $0^{\prime} s$ except for a 1 in a column j. Hence Q^{t} and Q are permutation matrices.

References

(1) Brualdi. R. A. 1985. An interesting face of the
polytope of doubly stochastic matrices, Lin.

Multilin．Alg．17，5－18．
〔2〕 Brualdi．R．A．and P．M．Gibson． 1978.
The convex polyhedron of doubly stochastic matrices：
I．Applications of the permanent function，J．
Combi．theory．Ser．B．，22，175－198．
（3）Foregger．T．H．1980．On the minimum value of the permanent of a nearly decomposable doubly stochastic matrix，Lin．Alg．Applic． 32. 75－85．
（4）Minc．H．1978．Permanents，Encyclopedia of mathematics and its application 6. Addison－Wesley．
（5）Minc．H．1983．Theory of Permanents 1978－198I， Lin．Mullilin．Alg．，227－263．
〔6〕 Minc．H．1987．Theory of Permanents 1982－1985，Lin．Multilin．Alg．，21（2）， 109－148．

摘 要

퍼머넨트 理論에 관한 많은 研究들은 주로 n 次의 正方行列에 관련되어 왔다．本 論文에서는 이러한 正方行列에 관한 理論을 一般的인 $\mathrm{m} \times \mathrm{n}$ 行列로 확장시켰다．곧 分解할 수 없는 $\mathrm{m} \times \mathrm{n}$ 行列과 分解가능한 $\mathrm{m} \times \mathrm{n}$行列의 構造에 관한 정리돌과 樎䄪에 관한 정리들을 一般的으로 확장시켜 證明하였다．

