Changes of Some Harvested populations of Gamtae， Ecklonia cava Kjellman

LEE Ki－Wan
（Dept．Fisheries Biology）

훼손된 감태군락의 변화

이 기 완
（증식학과）

감태는 다년생 海澡로서 모자반류와 더불어 海中林을 이루어 어류의 회유장 및 산란잠을 提供할 뿐만 아니라 패류의 먹이로도 利用되는 重要한 海澡의 일종이다．

最近 濟州道에서는 알긴산의 원료로서 감태의需要가 늘어나자 風㩰에만 의지하던 감태를 해너 를 通한 인위적 採取도 하게 되어 감태군락의 破填가 念慮되었다．
著者는 1979 년 4 월부터 1980 년 3 월 까지摔州道 동부연안에서 探取되어 毁挰된 군락과 자 연상태의 군락을 比較 調査站였다．

자연 상태에서의 감태는 $2 \sim 3$ 년생이 주된 군

락을 조성하교 있으며，단위면적（ m^{\prime} ）당 $6.02 \sim$ 5.33 개체였다．

採取된 군락중 1 년이 경과된 地域에서는 자연 상태의 군락과 此較媹을 먜 一時的으로 4 배의 개 체수를 보이지만，반면에 $2 \sim 3$ 년 경과한 군락에 서는 약 2 배로서 자연상태의 군락과 비숫혔다．

비록 採取된 군락의 개체수가 2 배 이상 된다 고 해도 이것은 인근 감태군락에서 온 포자가 착생하여 생육된 것으로 생각된다．이는 一般的으로 이 海藻 의 포자방출 時期가 늦가을이 라교 생각 할 때 現在 의 감태 採取時期인 여름철에서 늦어도． 8 월부터 2 개월은 ㄱ 時期를 늦추는 것이 바람직 하다．

INTRODUCTI ON

In Korean water，it is a well known fact that Gamtae（Ecklonia cava Kjellman）and Mo－ jaban（Sargassum spp．）are the main components of underwater marine algal forest．They formshelter and spawning places for fishes and feeds for topshells and abalone，etc．
In Jeju island，there is a manufacturing plant producting alginic acids fromGamtae which drifted on the shore after typhoon．In the last several years，however，the demands for Gamtae has increased rapidly，and necessary amounts for producing alginic acids could

Fig. 1. Showing the theee invesigated sites.
not supply the needs. Therefore, women divers have harvested Gamtae for the purpose of supplementing the supply unfort unately they have done so without consideration, and the overharvesting of Gamtae brings out the problem of destruction of its algal populations.

The previous studies about Gamtae are very limited. Only a few investigations were made namely on the distribution of this species (Kang, $1966 ; 1968$; Kang et al., 1978 ; Lee et al, 1971 ; Lee, 1974, 1976 ;Lee, 1976), on it s growth and seasonal variati on of weight (Iwahashi, $1968 \mathrm{a}, 1968 \mathrm{~b}$), on the changes of year class (Iwahashi, 1971); as a line in the chain of ecological st udy, and on the age and growth (Hayas hida: 1977).

The present study attemps to determine the ages of structure of the intact Gamt ae population and to compare it to those of the harvested population. Discussions were made on the ecological effect of harvest of Gamtae population.

METHODS

Three different sites (Fig. 1) were selected to investigate Gamtae (Ecklomia cava Kjel lman) populations in the eastern part of Jeju island, and the investigations were performed from April 1979 to March 1980.
The investigations of unharvested algal population in nat ural condition were made in depths up to $20 m \sim 22 m$, beyond the usual diving depth of women divers. Substrata of these places composed mainly of sand and extruding flat rocks. The investigations were carried out in one of the flat rocky areas by scuba diving using a $5 m \times 5 m$ rope quadrate to collect all the Gamtae fronds.
All collected fronds were cut in cross sections(Fig. 2) in the middle portion between the starting point of holdfast and the first pinnate blade, and the growth rings (Hayashida: 1977) were examined under a light microscopy.
The harvested Gamtae populations were investigated on three different sites : one year old population after harvesting near the Udo coast (Fig. l.C), two and three years old populations near Jongdali coast(Fig. 1. B). The water depth of those three investigated sites were within the range of $7 m \sim 10 m$, and the substrata condition of the three sites were almost identical (Fig. 1. A).

RESULTS and DISCESSIONS

Abstract

in $1!9.4$ the unharvested population (Table 1) has its maximum density 33.9 individuals per m^{2} in August and it decreased to 10.13 individuals per m^{2} in October. The mean den sit! was 18.40 frond per m^{*}. Two or three years old fronds were the dominant group. and the mean density was $6.02 \sim 5.53$ individuals per m^{2}. While the other algal groups with no growth ring groups with shown its 1 ndividual number as 3.88 per m^{2}, and three growth ring group was 0.82 , and fourgrowth ring group 0. 10 during the investigating year of April 1979 ~ March 1980.

In one year old group was increased at the rate of 55% compared with the growth ring group. while individual number of t wo growth ring group was decreased at the relatively small rate of 8% compared with one growth ring group. But.individual numbers of three and four growih rings decreased at the rate of 85% and 88% compared two and three growth ring groups during the investigating periods from April 1979 to March 1980.

The inividudal numbers were compared from July to August with the number of October to November 1979 after the summer typhoon season was over. All of individual numbers were decreased; at therate of 67% in no growth ring group, 75% in one ring growth group,

Fig. 2. Gamtoe frond, Eckionia covo KJell, showing the portion of cross sectlon.

 at relatively small rate of 19% in two growth ring group, 76% in three growth ring group. and maxımumrate of 100% in four growth ring group.Therefore, the consisting age of the main individual groups in unharvested populations could estimate its age as $\angle \sim 3$ years old. The other individuals were leftout from population and disappeared or washed ashore by wild waves after bad weather condition.

On the other hand, individuals of growth ring counted the number as 21.16 per m^{n}. while one growth ring individuals was 6.81 after the first appearance but its number indicated that they were decreased at the rate of 68% compared with no ring group (Table 2) in the har vested Gamtae population with one year passed.

Table 1. Monthly changes of Gamtage (Eckionia carc Kjellman) density based on the unhar vested population

Mo		$\begin{gathered} 79 \\ 4 \end{gathered}$	\bigcirc	6	7	8	9	10	11	12	$\begin{array}{r} \prime 80 \\ 1 \end{array}$	2	3	average $\left(m^{2}\right)$
	$\stackrel{\text { No }}{\text { G. }}$	2.48	2.92	4.32	4.84	10.44	-	2.28	2.76	-	1.56	-	3.22	3.88
	$\mathrm{G}^{1} \mathrm{R}$	6.44	7.6	8.16	12.28	15.84	-	3.28	3.72	-	4.16	-	6.04	6.02
	G.R.	7.32	6.56	5.4	5.88	6.36	-	4.25	5.72	-	6.08	-	7.12	5.53
	G.R.	0.64	0.4	0.84	1.96	1.08	-	0.32	0.44	-	0.96	-	0.76	0.82
	$\mathrm{G}^{4} \mathrm{R}$.	0.08	0.16	0	0.28	0.2	-	0	0	-	0	-	0.24	0.10
$\mathrm{G}_{\mathrm{c}} \mathrm{F}^{\mathrm{R}}$.		0	0	0	0	0.04	-	0	0	-	0	-	0.12	0.02

G. R. growth ring

- Failed to collect fronds

In two years Gamtae population (Table 3) after harvest, the average individual number of no ring group was 7.54 per m^{2}, while one growth ring group was 3.27 , which shows decreasing tendency at the rate of 57% compared with no growth ring group. On the contrary,the average individual number with three growth ring were 5.2 , which shown approximately 60% increase rate compared with two growth ring group.

Table 2. Monthly changes of one year passed Gamtae density after harvest

In the harvested sites, all of the Gamtae populations were much higher in individual numbers and approximately t wo timeshigher than unharvested Gamt ae population, but it is interesting that the individual number with no growth ring group was 21.16 per m^{2}, while one growth ring group was 6.81 at the rate of 60% decrease. However, it was decreased at the rate of 24% in the three years old algal population of Gamtae (Table 4)

Usually, high decrease rate reached upto 70% after typhoon (I wahashi: 1971). Similar results were obtained in the one year old Gamtae population after harvest. But in two populations, two and three old after harvest, the decrease rate reduced at thetrate of 57% and 24% respectively. It was supposed as the result of protection by adult fronds when the young ones were weak.

Table 3. Monthly changes of t wo years passed Gamtae population after harvest

Month		$\begin{array}{r} 79 \\ 4 \end{array}$	5	6	7	8	9	10	11	'80			$\begin{gathered} 3_{\left(m^{2}\right)}^{\text {average }} \\ \hline \end{gathered}$		
		12								1	2				
	$\begin{array}{\|l} \hline \text { No } \\ \text { G.R. } \end{array}$		10.92	10.04	7.68	8.16	10.64	-	3.36	3	-	-	6.52	-	7.54
	G.R.	0	0	2.16	3.8	4.28	-	1.52	1.96	-	-	5.92	-	3.27	
	G_{R}^{2}	3.88	3.44	4.36	6.48	8.52	-	4.16	4.28	-	-	6.56	-	5.20	

Some divers engaged in the harvest of Gamtae insisted that if one frond was cut of f the two new fronds grow. However,this is a groundless thought if one takes into the sporing periods (Okamura : 1936) of Gamtae spore. If one part of ramtae fronds is harvested in some Gamtae population and all of remaining other fronds drifted and left out, it is very difficult to recover with new population. For that reason, harvesting period । of this algae must avoid summer season and delay at least two month from August to prevent the damage of a Gamtae populations.

Table 4. Monthly changes of three years passed Gamtae density after harvest

Month		$\begin{array}{r} 79 \\ 4 \end{array}$	5	6	7	8	9	10	11	12	80 1	2	3	average (m^{2})
E	$\begin{aligned} & \text { No } \\ & \text { G. R. } \end{aligned}$	6.48	7.08	7.56	8.2	7.72	-	1.72	2.36	-	-	6.96		6.01
哿	G. ${ }^{1}$.	0	0	0	2.76	6.16	-	3.52	2.88	-	-	7.48		4.56
$\overline{\vec{E}}$	G. ${ }^{2}$	5.04	7.28	5.96	8.6	7.24	-	4.64	3.88	-	-	5	-	5.95
${ }^{\circ}$	G. ${ }^{3}$.	2.2	1.16	1.84	1.48	2.64	-	0.72	0.84	-	-	1.32	-	1.52

Lee Ki - Wan

SUMMARY

Populational changes of Gamt ae (Ecklomia cava Kjellman) harvested by women divers were investigated to compare with three unharvested Gamtae populations at the three different sites in the eastern part of Jeju island from April 1979 to March 1980.
Main consisting 1 ndividuals of Gamtae population were $2 \sim 3$ years old fronds as seen by the growth ring, and its individual numbers were $6.02 \sim 5.33$ per m^{*} in the unharvested Gamtae population.

In the harvested Gamt ae population with one year passed, individual numbers of fronds approximately four times temporarily, while, the other two groups with two and three years old were far surpassed in individual numbers, reached up to two times more than unharvested Gamt ae population.

However, if the sporing period is late fall, above increasing rate of individual numbers in harvested populations could be thought of an effect of discharged spores from other populations of Gamt ae. Therefore, the harvesting periods, presently known as summer season, must delay at least two month from August, although the sporing period can not be defined exactly.

REFERENCES

Hayasida F. (1977) : On age and growth of brown alga, Ecklonia cava Kjell., forming aquatic forest. Bull. of Japanese Society of Scientific Fisheries, 43(9), 1043-1051(In Ja panese)
Iwahashi Y. (1968a): Ecological studies on Eisenia and Ecklonia in the coast of Izu Peninsula -1 . on the growth of Ecklonia cava Kjell., ibid. 1,33-36 (In Japanese) (1968b): Ecological studies on Eisenta and Ecklomia in the coast of lzu Penınsula-II, Seasonal variation of weight of Eck.onia cata Kjell.. ibid., 1, 33-36 (ln Japanese).
___ (1971): Ecological studies of Eisenia and Eckloniain the coast of Izu Peninsula-III, On the changes of year class of Ecklonia cava Kjell. in that community. Bull. Schizuoka Pref. Fish. Exp. Stat. 4, 37-39(In Japanese).
Kang J. W. (1966) : On the geographic distribution of marine algae in Korea. Bull. Pusan Fish. Coll., 7(1, 2), 50-51.
(1968) : Illustrated encyclopedia of Fauna and flora of Korea Vol. 8 marine algae, Eucation Ministry, Seoul (In Korean).
and Lee J.H. (1978). The marine

Changes of some harvested populations of gamtae
algal flora of Geoje－do area Korean association for con－ servation of Nature Report．14， 93－101（In Korean）．
Lee K．W．（1972）：Annual variation of ma－ rine algal flora at Dongbacksum． Bull．Fac．Fish．Jeju Univ． 1 （1）．8－16（In Korean）．
（1974）：Survey of marine algal distribution and vegetation at marine Lab．of Cheju University． Che ju Univ．Jour．4，269－284（In Korean）．
（1976）：Survey of the algal flora
of Jeju Island．Bull．Mar．Biol． St．Jeju Nat．Univ．1．21－42． and Kang J．W．（1971）：A prelim－ inary survey of the algal flora and communities of Dongbaiksum． Pusan Publ．Mar．Lab．Pusan Fish． Coll．4．29－37（In Korean）．
Lee Y．P．and Lee I．K．（1976）：On the algal community in the intertidal belt of Jeju Island，1．Algal com－ munity of spring season Korean Jour．Botany，19（4），111－118（In Korean）．
Okamura K．（1936）：Nippon Kaiso－shi， Tokyo（In Japanese）．
※ 본 研究는 文教部 研究質에 의함．

