Quotients of Matrix Semiring

Sung－ho Yang

행열 반환의 몫
梁 成 豪

Summary

This paper considers the quotient structure of matrix semirings．We prove if R is a semiring and I is a Q－ideal of R ，then the set of $n \times n$ matrices over $R, M_{n}[R]$ ，is a semiring，$M_{n}[I]$ is a $M_{n}[Q]$－ ideal of $M_{n}[R]$ and $M_{n}[R] / M_{n}[1]$ is isomorphic to $M_{n}[R / I]$ ．

Preliminaries

When R is a semiring and I is an ideal of R ， the collection $\{x+I\} x \in R$ of sets $x+I=\{x+i \mid i \in I\}$ need not be a partition of R．P．J．Allen［1］ defined Q－ideal and maximal homomorphism and established the Fundamental Theorem of Homomoph－ isms in a large class of semirings．

The purpose of this paper is to build the quotient structure in matrix semirings．
The definitions of semiring，Q－ideal and maximal homomorphism used in［1］will be used throughout this paper．These definitions are given as follows．

Definition 1．A non－empty set R together with two associative binary operations called addition and multiplication（denoted by + and \cdot respectively） will be called a semiring provided；
（1）addition is a commutative operation，
（2）．there exist $0 \in R$ such that $x+0=x$ and $x 0=$ $0 x=0$ for each $x \in R$ and
（3）multiplication distributes over addition both from the left and from the right．

Definition 2．A non－empty subset I of a semi－ ring R will be called an ideal if $a, b \in I$ and $r \in R$ implies $a+b \in I, r a \in I$ ．and $a r \in I$ ．

Definition 3．A mapping φ from the semiring R into the semiring R^{\prime} will be called a homomor $p-$ $h i s m$ if $\varphi(a+b)=\varphi(a)+\varphi(b)$ and $\varphi(a b)=\varphi(a) \varphi(b)$ for each $a, b \in R$ ．An isomorphism is one－to－one homomorphism．The semirings R and R^{\prime} will be called isomorphic（denoted by $R \cong R^{\prime}$ ）if there exists an isomorphism from R onto R^{\prime} ．

Definition 4．An ideal I in the semiring R will be called $a Q$－ideal if there exists a subset Q of R satisfying the following conditions；
（1）$\{q+I\}_{q \in Q}$ is a partition of R and
（2）if $\boldsymbol{q}_{1}, \boldsymbol{q}_{2} \in Q$ such that $\boldsymbol{q}_{1} \neq \boldsymbol{q}_{2}$, then $\left(\boldsymbol{q}_{1}+I\right) \cap$ $\left(q_{2}+I\right)=\varnothing$ ．

Definition 5．A homomorphism φ from the semiring R onto the semiring R^{\prime} is said to be maximal if for each $a \in R^{\prime}$ there exists，$c_{\bullet} \in \varphi^{-1}(\{a\})$ such that $x+\operatorname{ker} \varphi \subset c_{a}+\operatorname{ker} \varphi$ for each $x=\varphi^{-1}((\alpha))$ ， where $\operatorname{ker} \varphi=\{x \in R \mid \varphi(x)=0\}$ ．

Lemma 6. Let I be a Q-ideal in the .semiring R.

If $x \in R$, thea there exists a unique $q \in Q$ such that $\boldsymbol{x}+\boldsymbol{I} \subset q+\boldsymbol{I}$.

Theorem 7. If I is a Q-ideal in the semiring \boldsymbol{R}, then $R / I=\left(\{q+I\}_{q \in Q}, \oplus_{0}, \rho_{\mathbf{Q}}\right)$ is a semiring.

Theorem 8. If φ is a meximal homomorphism from the semiring ' R onto the semiring R^{\prime}, then $R / \operatorname{ker} \varphi \cong R^{\prime}$.

The quotient of matrix smirings

Throughout this section, unless otherwise states, \boldsymbol{R} will be a commutative semiring and $M_{n}[R]$ will be the semiring of $n \times n$ matrices over R.

Theorem 9. If R is a semiring, then $M_{n}[R]$ is also.

Proof. We define the binary operations in $M_{n}[R]$ as follows,
$\left[a_{i j}\right]+\left[b_{i j}\right]=\left[a_{i j}+b_{i j}\right]$ and $\left[a_{i j}\right]\left[b_{i j}\right]=\left[\sum_{k=1}^{n} a_{i k} b_{k j}\right]$
for all $\left[a_{i j}\right],\left[b_{i j}\right] \in M_{n}[R]$.
Then it is easy to show that $M_{n}[R]$ is a semiring.

Curollary 10. If R is a semiring and I is a \boldsymbol{Q}-ideal of R, then $M_{n}[R / I]$ is a semiring.

Prjof. By Theorem 7 and Theorem 9, it is obvicus.
In this ccrollary, the bir ary operations are defined as follows;
(1) $\left[q^{\prime}{ }_{j j}+I\right]+\left[q^{\prime \prime}{ }_{i j}+I\right]=\left[q_{i j}+I\right]$
where $q^{\prime}{ }_{i j}+q^{\prime \prime}{ }_{i j}+I \subset q_{i j}+I$ for $\operatorname{all}(i, j)=\bar{n} \times \bar{n}$
(2) $\left[q^{\prime}{ }_{i j}+I\right]\left[q^{\prime \prime}{ }_{i j}+I\right]=\left[q_{i j}+I\right]$
where $\sum_{k=1}^{n} q^{\prime}{ }_{k} q^{n}{ }_{k j}+I \subset q_{i j}+I$ for all $(i, j) \subset \bar{n} \times \bar{n}$.

Theorem 11. If R is a semiring and I is a
Q-ideal in R, then $M_{n}\lceil I]$ is a $M_{n}[Q]$-ideal in $M_{n}[R]$.

Proof. It is clear that $M_{n}[I]$ is an ideal in $M_{n}[R]$.
(1) In this theorem, $M_{n}[Q]$ denotes the set of all matrices over the set \boldsymbol{Q}.
Suppose $\left[a_{i j}\right] \in M_{n}[R]$. Since $a_{i j} \in R$ for all (i, j) $\in \tilde{n} \times \bar{n}$, where $\overline{\mathrm{n}}=\{1,2, \cdots, n\}$ and I is a Q-ideal in $R, a_{i j} \in \underbrace{\cup}_{\boldsymbol{q}} \bigcup_{\boldsymbol{Q}}\{\boldsymbol{q}+I\}$ for all $(i, j) \subseteq \tilde{\mathrm{n}} \times \overline{\mathrm{n}}$.
i.e. $a_{i j}=q_{i j}+m_{i j}$ for some $q_{i j} \in Q$ and some $m_{i j}=$
I and for all $(i, j) \triangleq \bar{n} \times \bar{n}$.
Thus $\left[a_{i j}\right]=\left[q_{i j}+m_{i j}\right]=\left[q_{i j}\right]+\left[m_{i j}\right] \in P+M_{n}[I]$
for some $\left.P=q_{i j}\right] \in M_{n}[Q]$.
Hence $\left[a_{i j}\right]=P \bigcup_{M_{n}[Q]}\left(P+M_{n}[I]\right)$.
(2) Let $\left[p_{i j}\right]$ and $\left[s_{i j}\right]$ be in $M_{n}[Q]$ and let $\left[p_{i j}\right] \neq\left[s_{i j}\right]$.
Then $p_{i j}, s_{i}, \in Q$ for all $(i, j) \in \bar{n} \times \bar{n}$ and $p_{i j} \neq s_{i j}$ for some (i, j) $\models \overline{\mathrm{n}} \times \overline{\mathrm{n}}$.
Since I is a Q-ideal in $R,\left(p_{i}+I\right) \cap\left(s_{i}+I\right)=\varnothing \varnothing$. i.e. $p_{i j}+m \neq s_{1 j}+m^{\prime}$ for all $m, m^{\prime} \in I$.

Consequently, the $i j$-entry of every matrix in $\left[p_{i j}\right]$ $+M_{n}[I]$ is different from the $i j$-entry of every matrix in $\left[s_{i j}\right]+M_{n}[I]$.
i.e. $\left.\left(\left[p_{i j}\right]+M_{n}[I]\right) \cap\left(\left[s_{i j}\right]+M_{n_{\llcorner }}^{-} I\right]\right)=\varnothing$.

Hence $\left.M_{n}-I\right]$ is a $M_{n}[Q]$-ideal in $M_{n}[R]$.

Corollary 12. If R is a semiring and I is a Q-ideal in R, then $M_{n-}^{-} R^{-} / M_{n}[I]=\left(\left\{P+M_{n}[I]\right\} P \in\right.$ $M_{n}[Q], \ominus_{\left.\left.M_{n}-Q\right],{ }^{-} M_{n}[Q]\right)}$ is a semiring.

Proof. This corollary is the immediate result of Theorem 11 and Theorem 7.
The operations $\oplus_{M_{n}[Q]}$ and $\odot_{\left.M_{n-}^{r} Q\right]}$ in $M_{n}[R] / M_{n}$ $[I]$ are as follows;
(1) $\left(P^{\prime}+M_{n}{ }^{r} I\right] \Psi_{M_{n}[Q]}\left(P^{\prime \prime}+M_{n}[I]\right)=P+M_{n}[I]$ where $P^{\prime}+P^{\prime \prime}+M_{n}[I] \subset P+M_{n}[I]$ and
(2) $\left(P^{\prime}+M_{n}[I]\right) \ominus_{M_{n}} Q^{\left(P^{\prime \prime}+M_{n}[I]\right)=P+M_{n}[I]}$
where $P^{\prime} P^{\prime}+M_{n}[I] \subset P+M_{n}[I]$.

Proposition 13. If I is a Q-ideal in a semiring R, then I is a zero-element in R / I.

Proof. Let $q^{*} \in Q$ such that $I \subset q^{*}+I$.
Then $q^{*}+I$ is a zero-element in R / I by Theorem 8 in [1].
Since $0 \in I \subset q^{*}+I, \quad 0=q^{*}+i$ for some $i \in I$.
Thus $q^{*}+I=q^{*}+0+I=q^{*}+q^{*}+i+I \subset q^{*}+q^{*}+I$.
Since $q^{*}+q^{*}+I$ is contained in a unique coset $q^{\prime}+1$ where $q^{\prime} \in Q, q^{\prime}+1=q^{*}+1$. i.e. $q^{*}+q^{*}+1=q^{*}+1$. Thus $q^{*}+q^{*}=q^{*}+i_{1}$ for some $i_{1} \in 1$. Hence $q^{*}+I=q^{*}$ $+0+1=q^{*}+q^{*}+i+1=q^{*}+i_{1}+i+1=0+i_{1}+1 \subseteq 1$.
Therefore $q^{*}+\boldsymbol{l}=1$.

Proposition 14. A Q-ideal l of semiring R is a k-ideal of R.

Proof. Recall that an ideal l is k-ideal if $x+$ $i \in I$, where $x \in R$ and $i \in I$, implies $x \in I$. Suppose $x+i \in 1$, where $x \in R$ and $i \in 1$. Then there exists a unique coset $q+1$ such that $x+I \subset q+1$.

Hence $q=q^{*}$. Therefore $\boldsymbol{x} \subseteq \boldsymbol{x}+\boldsymbol{I}=\boldsymbol{q}+\boldsymbol{I}=\boldsymbol{I}$.

Theorem 15. If R is a semiring and l is a Q ideal in R, then $M_{n}[R] / M_{n}[I]$ is isomorphic to $M_{n}[R / I]$.

Proof. For each $a_{i j} \in R$, there exists a unique $q_{i j} \in Q$ such that $a_{i j}+\boldsymbol{I} \subset q_{i j}+\boldsymbol{I}$ by Lemma 6. Define the map $\left.\varphi: M_{n}\lceil R] \rightarrow M_{n} \sqsubset R / 1\right]$ by $\varphi\left(\left\ulcorner a_{i j}\right\rfloor\right)=$ $\left[q_{i j}+\boldsymbol{I}\right]$ for each $\left[a_{i j}\right] \in M_{n}\ulcorner R]$, where $a_{i j}+I=\boldsymbol{q}_{i j}+$ I for each $(i, j) \in \bar{n} \times \bar{n}$. Then it is clear that φ is a homomorphism from the semiring $M_{n}\left\ulcorner R^{〔}\right\rfloor$ onto $M_{n}[R / I] . \operatorname{ker} \varphi=M_{n}[I]$ by Proposition 14 .
For each $\left[q_{i j}+1\right] \subseteq M_{n}[R / I],\left[q_{i j}\right]=\varphi^{-1}\left(\left[q_{i j}+I\right]\right)$. If $\left[r_{i j}\right] \in \varphi^{-1}\left(\left[q_{i j}+I\right]\right)$, then $r_{i j}+I \subset q_{i j}+I$ for all $(i, j) \in \overline{\mathrm{n}} \mathrm{x} \overline{\mathrm{n}}$.
Thus $\left[r_{i j}\right]+\operatorname{ker} \varphi \subset\left[\boldsymbol{q}_{i j}\right]+\operatorname{ker} \varphi$. Hence φ is a maximal homomorphism from the semiring $M_{n}[R]$ onto the semiring $M_{n}[R / I]$.
Therefore $M_{n}\lceil R] / M_{n}[I] \cong M_{n}[R / I]$ by Theorem 8 . Thus $x+i=q+1$. Since $x+i=1=q^{*}+1, x+i=q^{*}+I$.

Literatures Cited

[1]. P.J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc. 21.(1969). 412-416.
[2]. Y.B. Chun, Quotients of polynomial semiring, J. of N.S.R.I. Vol. 2.(1978). Yonsei University.

〈국문초폭〉

행열 반환의 몫

이 논문에서는 R 이 semiring이교 I 가 R 에서의 Q-ideal이면 $M_{n}[I]$ 는 $M_{n}[R]$ 에서 $M_{n}[Q]$-ideal이 되어 $M_{n}[R] / M_{n}[I]$ 는 semiring이 됨을 보였고 또 $M_{n}[R] / M_{n}[I]$ 와 $M_{n}[R / I]$ 는 서로 동형임율 보 였다.

