Quotients of Matrix Semiring

Sung-ho Yang

행열 반환의 몫

梁 成 豪

Summary

This paper considers the quotient structure of matrix semirings. We prove if R is a semiring and I is a Q-ideal of R, then the set of nxn matrices over R, $M_n[R]$, is a semiring, $M_n[R]$ is a $M_n[Q]$ -ideal of $M_n[R]$ and $M_n[R]/M_n[I]$ is isomorphic to $M_n[R/I]$.

Preliminaries

When R is a semiring and I is an ideal of R, the collection $\{x+I\}x \in R$ of sets $x+I = \{x+i | i \in I\}$ need not be a partition of R. P. J. Allen [1] defined Q-ideal and maximal homomorphism and established the Fundamental Theorem of Homomophisms in a large class of semirings.

The purpose of this paper is to build the quotient structure in matrix semirings.

The definitions of semiring, Q-ideal and maximal homomorphism used in [1] will be used throughout this paper. These definitions are given as follows.

Definition 1. A non-empty set R together with two associative binary operations called addition and multiplication (denoted by + and \cdot respectively) will be called a semiring provided;

- (1) addition is a commutative operation,
- (2) there exist $0 \in \mathbb{R}$ such that x+0=x and x0=0 for each $x \in \mathbb{R}$ and
- (3) multiplication distributes over addition both from the left and from the right.

Definition 2. A non-empty subset I of a semiring R will be called an *ideal* if a, $b \in I$ and $r \in R$ implies $a+b \in I$, $ra \in I$ and $ar \in I$.

Definition 3. A mapping φ from the semiring R into the semiring R' will be called a homomorphism if $\varphi(a+b)=\varphi(a)+\varphi(b)$ and $\varphi(ab)=\varphi(a)\varphi(b)$ for each a, $b\in R$. An isomorphism is one-to-one homomorphism. The semirings R and R' will be called isomorphic (denoted by $R\cong R'$) if there exists an isomorphism from R onto R'.

Definition 4. An ideal I in the semiring R will be called a Q-ideal if there exists a subset Q of R satisfying the following conditions;

- (1) $\{q+I\}_{q\in Q}$ is a partition of R and
- (2) if q_1 , $q_2 \in Q$ such that $q_1 \neq q_2$, then $(q_1 + I) \cap (q_2 + I) = \emptyset$.

Definition 5. A homomorphism φ from the semiring R onto the semiring R' is said to be maximal if for each $a \in R'$ there exists $c_a \in \varphi^{-1}(\{a\})$ such that $x + \ker \varphi \subset c_a + \ker \varphi$ for each $x \in \varphi^{-1}(\{a\})$, where $\ker \varphi = \{x \in R \mid \varphi(x) = 0\}$.

Lemma 6. Let I be a Q-ideal in the semiring R.

If $x \in \mathbb{R}$, then there exists a unique $q \in \mathbb{Q}$ such that $x+I \subset q+I$.

Theorem 7. If I is a Q-ideal in the semiring R, then $R/I = (\{q+I\}_{q \in Q}, \oplus_{\mathbf{Q}}, \odot_{\mathbf{Q}})$ is a semiring.

Theorem 8. If φ is a maximal homomorphism from the semiring R onto the semiring R', then $R/\ker \varphi \cong R'$.

The quotient of matrix smirings

Throughout this section, unless otherwise states, R will be a commutative semiring and $M_n[R]$ will be the semiring of nxn matrices over R.

Theorem 9. If R is a semiring, then $M_n[R]$ is also.

Proof. We define the binary operations in $M_n[R]$ as follows,

$$[a_{ij}]+[b_{ij}]=[a_{ij}+b_{ij}]$$
 and $[a_{ij}][b_{ij}]=[\sum_{i=1}^{n}a_{ik}b_{ki}]$

for all $[a_{ij}]$, $[b_{ij}] \in M_n[R]$.

Then it is easy to show that $M_n[R]$ is a semiring.

Corollary 10. If R is a semiring and I is a Q-ideal of R, then $M_n[R/I]$ is a semiring.

Proof. By Theorem 7 and Theorem 9, it is obvious.

In this corollary, the birary operations are defined as follows;

(1)
$$[q'_{ij}+I]+[q''_{ij}+I]=[q_{ij}+I]$$

where $q'_{ij}+q''_{ij}+I \subset q_{ij}+I$ for all $(i, j) \subseteq \bar{n} \times \bar{n}$

(2)
$$[q'_{ij}+I][q''_{ij}+I]=[q_{ij}+I]$$

where $\sum_{k=1}^{n} q'_{ik} q''_{kj} + I \subset q_{ij} + I$ for all $(i, j) \subset \bar{n} x \bar{n}$.

Theorem 11. If R is a semiring and I is a

Q-ideal in R, then $M_n[I]$ is a $M_n[Q]$ -ideal in $M_n[R]$.

Proof. It is 'clear that $M_n[I]$ is an ideal in $M_n[R]$.

(1) In this theorem, $M_n[Q]$ denotes the set of all matrices over the set Q.

Suppose $[a_{i,j}] \in M_n[R]$. Since $a_{i,j} \in R$ for all $(i, j) \in \tilde{n} \times \tilde{n}$, where $\tilde{n} = \{1, 2, \dots, n\}$ and I is a Q-ideal in R, $a_{i,j} \in \bigcup_{\alpha \in Q} \{q+I\}$ for all $(i, j) \in \tilde{n} \times \tilde{n}$.

i.e. $a_{ij} = q_{ij} + m_{ij}$ for some $q_{ij} \in Q$ and some $m_{ij} \in I$ and for all $(i, j) \in \bar{n}x\bar{n}$.

Thus $[a_{ij}] = [q_{ij} + m_{ij}] = [q_{ij}] + [m_{ij}] \in P + M_n[I]$ for some $P = [q_{ij}] \in M_n[Q]$.

Hence $[a_{i,j}] \subseteq \bigcup_{P \subseteq M_n[Q]} (P + M_n[I]).$

(2) Let $[p_{ij}]$ and $[s_{ij}]$ be in $M_n[Q]$ and let $[p_{ij}] \neq [s_{ij}]$.

Then p_{ij} , $s_{ij} \in Q$ for all $(i, j) \in \bar{n}x\bar{n}$ and $p_{ij} + s_{ij}$ for some $(i, j) \in \bar{n}x\bar{n}$.

Since I is a Q-ideal in R, $(p_{ij}+I) \cap (s_{ij}+I) = \emptyset$.

i.e. $p_{ij}+m \neq s_{ij}+m'$ for all $m, m' \in I$.

Consequently, the ij-entry of every matrix in $[p_{ij}]$ + $M_n[I]$ is different from the ij-entry of every matrix in $[s_{ij}] + M_n[I]$.

i.e. $([p_{ij}]+M_n[I]) \cap ([s_{ij}]+M_n[I]) = \emptyset$.

Hence $M_n[I]$ is a $M_n[Q]$ -ideal in $M_n[R]$.

Corollary 12. If R is a semiring and I is a Q-ideal in R, then $M_n[R]/M_n[I] = (\{P + M_n[I]\}_{P \in \mathbb{R}})$ is a semiring.

Proof. This corollary is the immediate result of Theorem 11 and Theorem 7.

The operations $\bigoplus_{M_n [Q]}$ and $\bigoplus_{M_n [Q]}$ in $M_n [R]/M_n$ [I] are as follows;

 $(1) (P'+M_n[I] \oplus_{M_n[Q]} (P'+M_n[I]) = P+M_n[I]$

where $P' + P'' + M_n[I] \subset P + M_n[I]$ and

(2) $(P'+M_n[I]) \odot_{M_n} Q(P'+M_n[I]) = P+M_n[I]$

where $P'P'+M_n[I]\subset P+M_n[I]$.

Proposition 13. If I is a Q-ideal in a semiring R, then I is a zero-element in R/I.

Proof. Let $q^* \in Q$ such that $I \subset q^* + I$. Then $q^* + I$ is a zero-element in R/I by Theorem 8 in [1].

Since $0 \in I \subset q^* + I$, $0 = q^* + i$ for some $i \in I$. Thus $q^* + I = q^* + 0 + I = q^* + q^* + i + I \subset q^* + q^* + I$. Since $q^* + q^* + I$ is contained in a unique coset q' + I where $q' \in Q$, $q' + I = q^* + I$. i.e. $q^* + q^* + I = q^* + I$. Thus $q^* + q^* = q^* + i_1$ for some $i_1 \in I$. Hence $q^* + I = q^* + 0 + I = q^* + i_1 + i_1 + I = 0 + i_1 + I \subset I$. Therefore $q^* + I = I$.

Proposition 14. A Q-ideal I of semiring R is a k-ideal of R.

Proof. Recall that an ideal I is k-ideal if $x+i\in I$, where $x\in R$ and $i\in I$, implies $x\in I$. Suppose $x+i\in I$, where $x\in R$ and $i\in I$. Then there exists a unique coset q+1 such that $x+I\subset q+1$. Thus $x+i\in q+1$. Since $x+i\in I=q^*+1$, $x+i\in q^*+1$. Hence $q=q^*$. Therefore $x \in x+1 \subseteq q+1=1$.

Theorem 15. If R is a semiring and I is a Q-ideal in R, then $M_n[R]/M_n[I]$ is isomorphic to $M_n[R/I]$.

Proof. For each $a_{ij} \in R$, there exists a unique $q_{ij} \in Q$ such that $a_{ij} + l \subset q_{ij} + I$ by Lemma 6. Define the map $\varphi : M_n[R] \to M_n[R/I]$ by $\varphi([a_{ij}]) = [q_{ij} + I]$ for each $[a_{ij}] \in M_n[R]$, where $a_{ij} + I \subset q_{ij} + I$ for each $(i, j) \in \bar{n} \times \bar{n}$. Then it is clear that φ is a homomorphism from the semiring $M_n[R]$ onto $M_n[R/I]$. $\ker \varphi = M_n[I]$ by Proposition 14.

For each $[q_{ij}+I] \subseteq M_n[R/I]$, $[q_{ij}] \subseteq \varphi^{-1}([q_{ij}+I])$. If $[r_{ij}] \subseteq \varphi^{-1}([q_{ij}+I])$, then $r_{ij}+I \subseteq q_{ij}+I$ for all $(i, j) \subseteq \bar{n}_X\bar{n}$.

Thus $[r_{ij}] + \ker \varphi \subset [q_{ij}] + \ker \varphi$. Hence φ is a maximal homomorphism from the semiring $M_n[R]$ onto the semiring $M_n[R/I]$.

Therefore $M_n[R]/M_n[I] \cong M_n[R/I]$ by Theorem 8.

Literatures Cited

- P.J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer.
 Math. Soc. 21. (1969). 412-416.
- [2]. Y.B. Chun, Quotients of polynomial semiring, J. of N.S.R.I. Vol. 2.(1978). Yonsei University.

〈국문초록〉

행열 반환의 몫

이 논문에서는 R이 semiring이고 I가R에서의 Q-ideal이면 $M_n[I]$ 는 $M_n[R]$ 에서 $M_n[Q]$ -ideal이되어 $M_n[R]/M_n[I]$ 는 semiring이 됨을 보였고 또 $M_n[R]/M_n[I]$ 와 $M_n[R/I]$ 는 서로 동형임을 보였다.