Some Properties of β -irresolute Maps on Nearly Open Sets

Song Seok-Zun, Kim Do-Hyun

β - irresolute 寫像에 關한 考察

宋錫準・金道鼓

Summary

In this paper, we define a β -irresolute map and obtain its characterizations and some properties of the maps on nearly open sets. Moreover, we define a β -Hausdorff space and have its some topological properties and its characterizations.

I. Introduction and Preliminaries

Let T be a topology on a set X, and let "C1" and "Int" denote closure and interior with respect to T. In 1965, O. Njastad introduced the concepts of nearly open sets as follows; a subset A of a topological space (X,T) is an α -set or β -set if $A\subseteq Int$ (Cl(Int(A))) or ACCl(Int(A)) respectively. We denote the class of all α -sets or β -sets $\alpha(X)$ or $\beta(X)$ respectively. He studied some properties of topological structure using these nearly open sets, and showed that $\alpha(X)$ is a topology but $\beta(X)$ is not a topology and $T\subset \alpha(X)\subset \beta(X)$. And Maheshwari and Thakur developed these theory in 1980. They introduced the concept of a-irresolute map as follows; a map $f: X \to Y$ is said to be α -irresolute if the inverse image of every α -set in Y is an α -set in X. And they studied some properties of β -irresolute maps.

In this paper, we introduce the concept of β -irresolute map and investigate some properties of β -irresolute maps.

II. For β -irresolute maps on nearly open sets

Definition 2.1. A map $f:X \to Y$ is said to be β -irresolute if the inverse image of every β -set of Y is a β -set in X.

The concepts of continuous map, α -irresolute map and β -irresolute map are independent. For,

Example 2.2. (1) Let $f:(R,T) \to (R,L)$ by f(x) = x for all $x \in R$, where T is the usual topology on the real numbers R and L is the lower limit topology on R. Then f is not continuous and not α -irresolute map but f is β -irresolute map.

(2) Let $X = \{a,b,c,d\}$, $Y = \{x,y,z\}$ be equipped with the topologies $T_X = \{\phi, \{a\}, \{b,c\}, \{a,b,c\}, X\}, T_Y = \{\phi, \{x\}, Y\}$.

Define $f: X \rightarrow Y$ by f(a) = x, f(b) = y, f(c) = f(d) =

- z. Then f is continuous but f is not β -irresolute, since $f^{-1}(\{x,y\}) = \{a,b\} \notin \beta(X)$ for β -set $\{x,y\}$. Similarly f is not α -irresolute map.
- (3) Let us equip the sets X and Y as (2) with the topologies $T_X = \{ \phi, \{ a \}, X \}$ and $T_Y = \{ \phi, \{ x \}, Y \}$ respectively.

Define $f: X \rightarrow Y$ by f(a) = f(b) = x, f(c) = y, f(d) = z. Then f is β -irresolute and α -irresolute but it is not continuous, since $f^{-1}(\{x\}) = \{a,b\} \notin T_X$ for $\{x\} \in T_Y$.

Proposition 2.3. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are β -irresolute maps then $g \circ f: X \rightarrow Z$ is a β -irresolute map.

Proof. Let B be a β -set of Z. Then $g^{-1}(B)$ is a β -set of Y, for g is β -irresolute. Therefore $f^{-1}(g^{-1}(B)) = (gof)^{-1}(B)$ is a β -set of X because f is β -irresolute. Hence gof is a β -irresolute map.

Definition 2.4. ([4]) An α -set (β -set) which is closed is termed α -closed (β -closed).

Lemma 2.5. Let $B \subset X_0 \subset X$. If X_0 is closed in X and $B \in \beta(X)$ then $B \subset \beta(X_0)$.

Proof. If B is empty then it is trival. So let B be a nonempty β -set of X. Then BCCl(Int(B)). Since B is a nonempty β -set, it is clear that Int(B) $\neq \phi$. Since BCX₀ and X₀ is closed, we have Cl(Int(B))CX₀. Therefore, Cl(Int(B))CX₀ = Cl_{X₀}(Int_{X₀}(B)), and Cl(Int(B))CCl_{X₀}(Int_{X₀}(B)). Hence BCCl_{X₀}(Int_{X₀}(B)) and BC β (X₀).

We know that the union of β -sets is a β -set but the finite intersection of β -sets is not β -set in general. Say, in (R,T) of Example 2.2 (1), we have $[2,3] \cap [3,4] = \{3\} \notin \beta(R)$ for [2,3] and [3,4] are β -sets.

Lemma 2.6. A subset A of X is an α -set if and only if $A \cap B \in \beta(X)$ for all $B \in \beta(X)$.

Proof. See [1], section 1, proposition 1.

Theorem 2.7. If $f: X \rightarrow Y$ is a β -irresolute map and A is an α -closed in X, then the restriction $f|_A: A \rightarrow Y$ is a β -irresolute map.

Proof. Since f is β -irresolute, for any β -set V of Y, $f^1(V) \in \mathcal{B}(X)$. By hypothesis A is closed,

hence by lemma 2.5,

 $(f|_A)^{-1}(V) = f^{-1}(V) \cap A \in \beta(A)$ by lemma 2.6, since A is α -set.

This shows that $f|_{A}$ is β -irresolute.

Remark. In theorem 2.7, if A is simply closed in X, then $f|_A$ is not always β -irresolute. For if we take $A = \{b,c,d\}$ and consider example 2.2 (3), then we see that f is β -irresolute but $f|_A$ is not β -irresolute. And if A is not α -closed but β -closed, then for any β -set V of Y,

 $(f|_A)^{-1}(V) = f^{-1}(V) \cap Af\beta(A)$ by lemma 2.6. Definition 2.8. ([4]) The complement of an α -set (β -set) is termed a $\underline{\cos}$ -set ($\underline{\cos}$ -set). We denote the family of all $\underline{\cos}$ -sets ($\underline{\cos}$ -sets) of X by $\underline{\cos}(X)$ ($\underline{\cos}(X)$).

The intersection of all the coa-sets (co β -sets) containing a set A is termed the α -closure (β -closure) of A. Denote it by $\alpha cl(A)$ ($\beta cl(A)$). Then a set A is coa-set (co β -set) if and only if $\alpha cl(A) = A$ ($\beta cl(A) = A$).

Lemma 2.9. Let A be a subset of X. Then $x \in C(A)$ if and only if for any β -set U containing $x, A \cap U \neq \phi$.

Proof. Suppose $x \in \beta \operatorname{cl}(A)$. Let U be a β -set containing x such that $U \cap A = \phi$. And so, $A \subset X - U$. But X-U is a $\cos \beta$ -set and hence $\beta \operatorname{cl}(A) \subset X - U$. Since $x \notin X - U$, we obtain $x \notin \beta \operatorname{cl}(A)$ which is contrary to the hypothesis. Conversely, suppose that every β -set of X containing x meets A. If $x \notin \beta \operatorname{cl}(A)$, then there exists a $\cos \beta$ -set F of X such that $A \subset F$ and $x \notin F$. Therefore, $x \in X - F \in \beta(X)$. Hence X-F is a β -set of X containing x but $(X - F) \cap A = \phi$. This is contrary to the hypothesis.

Theorem 2.10. Let $f: X \rightarrow Y$ be a map. Then the followings are equivalent; (1) f is β -irresolute.

- (2) For $x \in X$ and any β -set V of Y containing f(x), there exists $U \in \beta(X)$ such that $x \in U$ and $f(U) \subset V$.
- (3) $f(\beta cl(A)) \subset \beta cl(f(A))$ for every $A \subset X$.
- (4) $\beta \operatorname{cl}(f^1(B)) \subset f^1(\beta \operatorname{cl}(B))$ for any $B \subset Y$.
- (5) Inverse image of every coβ-set of Y is a coβ-set

of X.

Proof. (1) implies (2): Let $V \in \beta(Y)$ and $f(x) \in V$. Since f is β -irresolute, $f^{-1}(V) \in \beta(X)$ and $x \in f^{-1}(V)$. Put $U = f^{-1}(V)$. Then $x \in U$ and $f(U) \subset V$. (2) implies (3): Let ACX and b∈βcl(A). We show f(b)∈βcl(f (A)) by proving each β -set V of Y which contains f(b) intersects f(A). For, finding $U \in \beta(X)$ containing b with $f(U) \subset V$, $b \in \beta cl(A)$ implies that $\phi \neq U \cap A$. which shows $\phi \neq f(U \cap A) \subset f(U) \cap f(A) \subset V \cap f(A)$. (3) implies (4): Let $A = f^{-1}(B)$. Then $f(\beta cl(A)) \subset$ $\beta \operatorname{cl}(f(A)) = \beta \operatorname{cl}(f(f^{-1}(B))) = \beta \operatorname{cl}(B \cap f(X)) \subset \beta \operatorname{cl}(B)$, so that $\beta \operatorname{cl}(A) \subset f^1(\beta \operatorname{cl}(B))$, as required. (4) implies (5): Let $B \subseteq Y$ be a $co\beta$ -set. Then $\beta cl(f^{-1}(B)) \subseteq f^{-1}$ $(\beta cl(B)) = f^{-1}(B)$, and since always $f^{-1}(B) \subset \beta cl(f^{-1})$ (B)), this shows that $f^{-1}(B)$ is a co β -set. (5) implies (1): This follows from $f^{-1}(Y-B) = X-f^{-1}(B)$ for any β-set B.

III. β -Hausdorff space and β -irresolute maps

Definition 3.1. A space X is said to be β -Hausdorff if for any two distinct points x, y of X, there exist disjoint β -sets U, V of X such that $x \in U$ and $y \in V$.

It is clear that every Hausdorff space is β -Hausdorff.

Proposition 3.2. The following properties are equivalent;

- (1) Y is β -Hausdorff.
- (2) Let $p \in Y$. For each $p \neq q$, there exists $U \in \beta(Y)$ such that $p \in U$ and $q \notin \beta \in I(U)$.
- (3) For each $p \in Y$, $\cap \{\beta cl(U): U \text{ is } \beta \text{-set containing } p\} \neq p$.
- (4) The diagonal $\triangle = \{ (y,y) : y \in Y \}$ is $\cos\beta$ -set in $Y \times Y$.

We have the following lemma to prove the proposition 3.2.

Lemma 3.3. If $A \in \beta(X)$, and $B \in \beta(Y)$, then $A \times B \in \beta(X \times Y)$.

Proof. $AxB \subset cl_X(Int_XA) \times cl_Y(Int_YB) = cl_{XxY}$ $(Int_X(A) \times Int_Y(B)) = cl_{XxY}(Int_{XxY}(AxB)).$ Conseuquetly $AxB \in \beta(XxY)$.

Proof of the proposition 3.2: (1) implies (2): Given q≠p, there exist disjoint β-sets U and V containing p and q respectively, which says that q∉βcl(U). (2) implies (3): If p≠q then there exists β-set U such that p∈U and q∉βcl(U). Hence q∉∩ $\{\beta cl(U): U \text{ is a } \beta\text{-set containing } p\}$. (3) implies (4): Let $(p,q)\notin \Delta$, then $p\neq q$ and since $p = \bigcap \{\beta cl(U): U \text{ is } \}$ a β -set containing p $\}$, there exists some $U \in \beta(Y)$ with $p \in U$ and $q \notin \beta cl(U)$. Since $U \cap \{Y - (\beta cl(U))\} =$ ϕ , U x {Y-(β cl(U))} is a β -set containing (p,q) by lemma 3.3. in $YxY-\Delta$. Hence $YxY-\Delta = \bigcup [Ux \{Y-\Delta\}]$ $\beta cl(U)$ is a β -set. Therefore Δ is a co β -set. (4) implies (1): If $p\neq q$, then $(p,q)\notin \Delta$. Therefore (p,q) has a β -set UxV of YxY such that (UxV) $\cap \Delta$ = ϕ . Hence $p \in U \in \beta(Y)$ and $q \in V \in \beta(Y)$ and $U \cap V = \phi$.

Theorem 3.4. If $f: X \rightarrow Y$ is a β -irresolute map and Y is β -Hausdorff then G(f) is a co β -set of XxY.

Proof. Let $(x,y)\in XxY-G(f)$. Then $y\neq f(x)$. Since y is β -Hausdorff, there exist disjoint β -sets W and V of Y such that $f(x)\in W$ and $y\in V$. Moreover, by theorem 2.10 (2), there exist $U\in \beta(X)$ such that $x\in U$ and $f(U)\subset W$, because f is β -irresolute. Therefore we obtain $(x,y)\in UxV\subset XxY-G(f)$. B, lemma 3.3, $UxV\in \beta(XxY)$. Hence XxY-G(f) is a union of β -sets of XxY. Therefore $XxY-G(f)\in \beta(XxY)$ since the union of β -sets is a β -set. Consequently, G(f) is a co β -set of XxY.

Proposition 3.5. Let X be arbitrary and Y be β -Hausdorff and f: X \rightarrow Y be a β -irresolute map and injective. Then X is β -Hausdorff.

Proof. For any $x\neq y\in X$, $f(x)\neq f(y)$ since f is injective. Then there exist disjoint β -sets U, V containing f(x), f(y) respectively. Hence $f^{-1}(U)$, $f^{-1}(V)$ are disjoint β -sets containing x,y respectively. And X is β -Hausdorff.

We recall that a topology is called extremally disconnected if the closure of every open set is open. ([2])

Lemma 3.6. A topology T on X is extremally

disconnected if and only if $\beta(X)$ is a topology. **Proof.** See [1], section 2.

Proposition 3.7. If f, g: $X \rightarrow Y$ are β -irresolute maps for extremally disconnected space X and β -Hausdorff space Y, $A = \{x: f(x) = g(x)\}$ is a co β -set of X.

Proof. Let $y \in X$ -A. Then $f(y) \neq g(y)$. Since Y is β -Hausdorff, there exist disjoint β -sets U, V of Y such that $f(y) \in U$ and $g(y) \in V$. Hence $f^{-1}(U)$ and $g^{-1}(V)$ are β -sets of X because f and g are β -irresolute. Let us put $B = f^{-1}(U) \cap g^{-1}(V)$. Then $y \in B \in \beta(X)$ by lemma 3.6, since X is extremally disconnected. Moreover, $A \cap B = \phi$ for otherwise $U \cap V \neq \phi$. Consequently, $y \in B \subset X$ -A, and hence

X-A is a union of β -sets of X, i.e. X-A $\in \beta(X)$. Therefore A is a co β -set of X.

Corollary 3.8. If f is a β -irresolute map of a β -Hausdorff space X which is extremally disconnected into itself then the set $A = \{x: f(x) = x\}$ is a co β -set.

Proof. Let $a \in \beta cl(A)$. If $a \notin A$, then $f(a) \neq a$. Since X is β -Hausdorff, there exist U, $V \in \beta(X)$ such that $f(a) \in U$, $a \in V$ and $U \cap V = \phi$. Since f is β -irresolute, $f^{-1}(U) \in \beta(X)$. Therefore $f^{-1}(U) \cap V$ is a β -set by lemma 3.6, and it contains a. Since $a \in \beta cl(A)$, by lemma 2.9, $f^{-1}(U) \cap V \cap A \neq \phi$. This leads to a contradiction that U and V have a common point. Hence $a \in A$, and $\beta cl(A) \subset A$. Consequently, A is a $co\beta$ -set.

References

- [1] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15(1965), 961-970.
- [2] T. Thompson, S-closed spaces, Proc. Amer. Math. Soc. 60(1976), 335-338.
- [3] Suk Geun Hwang, Almost c-continuous functions, J. Korean Math. Soc. 14(2) (1978), 229-234.
- [4] S.N. Maheshwari and S.S. Thakur, On α-ir-resolute mappings, Tamkang J. Math. 11(2) (1980), 209-214.
- [5] R.F. Dickmann Jr. and R.L. Krystock, S-sets and s-perfect mappings, Proc. Amer. Math. Soc. 80(1980), 687-692.
- [6] W.J. Pervin, Foundations of General Topology, Academic Press, New York (1964).
- [7] J. Dugundji, Topology, Allyn and Bacon, Inc., Boston (1970).

國 文 抄 錄

β - irresolute 寫像에 關한 考察

本 編文에서는, O. Njastad 가 定義한 β -set을 利用하여, β -irresolute 寫像을 定義하고 그에 關한 同値條件과 그외의 몇가지 性質을 찾아 硏究하였다.

이 β -irresolute 寫像은 連續寫像과 다르며, 또한 Maheshwari 와 Thakur가 定義한 α -irresolute 寫像과도 다른 性質임을 例로써 보였다. 더우기 β -Hausdorff 空間을 定義하여 그의 特性 및 및가지 位相 的 性質을 찾아 證明하였다.