제주대학교 Repository

Meniscus Generation Methodologies of Electrostatic Inkjet for Printed Electronics

Metadata Downloads
Abstract
Even after the successful demonstration of the electrostatic printing method for generating the printed conductive lines the method was not commercialized until now for printed electronic fabrication. This is due to the application of high voltage for the ejection of the droplet being reported and high throughput. Most of the electrostatic inkjet setup found in the literature was studied experimentally by charging the ink through metal capillary or using a charging wire inside the needle. Due to the relatively small dimension of the micro-channel it posses immense surface viscous force that most of the electrostatic force exerted by the charging electrode is absorbed or disseminated due to the viscous forces.
In the work presented in this thesis an electrokinetic ink pumping mechanism is suggested to overcome or subsidize the effect of viscous forces inside the ink chamber when the charging electrode exerts the electrostatic forces to eject the droplet from the nozzle. In addition to the micro-pumping mechanism a novel hybrid piezoelectric and electrostatic device is proposed for reducing energy requirement of the electrostatic inkjet head with the help of pre-developed meniscus through piezoelectric actuation. In the proposed concept the meniscus is generated at the tip of the electrode and the electrostatic potential is applied which has its highest gradient at the electrode apex. Since the liquid is already outside the nozzle therefore the nozzle viscous forces due to the narrow channel is subsidized considerably. It is also pertinent to mention here that the liquid is already accelerated and is transported at the tip of the ejection election therefore the dynamic pressure required to accelerate the liquid is also subsidized.
This concept is not only the first of its kind to be presented for the electrostatic inkjet ejection but it also enables the current researchers to optimized the electrostatic inkjet printing by reducing the forces which acts against the generation of the drop. Furthermore the proposed concept also provides the comparison of droplet size for pre-developed meniscus and electrostatically developed meniscus and conejet for the ejection of the drop. It was demonstrated that the novel concept proposed in this study reduces the size of the droplet considerably and also reduces the electrostatic potential for droplet generation.
전도성 라인을 프린팅하기 위한 정전기력 프린팅 방식의 성공적인 연구결과 발표에도 불구하고 인쇄 전자 부품 제조를 위한 기술은 지금까지 상용화가 이루어지지 않은 실정이다. 정전기력 잉크젯 시스템의 노즐에서 액적의 토출을 위한 높은 전압의 요구가 상용화의 걸림돌이 되고 있다. 기존 문헌에서 분석된 정전기력 잉크젯 연구는 금속 모세관을 통하여 잉크를 충전하거나 니들 내부의 충전 전극을 이용하는 실험적인 내용이 대부분이다. 상대적으로 작은 크기의 마이크로 채널 때문에 충전 전극에 의해 생성된 정전기력의 대부분이 흡수되거나 소멸시키는 큰 표면 점성력을 갖는다.
본 논문에서는 충전 전극이 노즐에서 액적을 토출하기 위한 정전기력을 발생시킬 때 잉크 챔버 내부의 점성력의 영향을 제거하거나 감소시키기 위하여 동전기(Electro Kinetic) 기반의 잉크 공급 메커니즘을 제안하고자 한다. 또한, 압전 구동을 통하여 사전 형성된 메니스커스의 도움으로 정전기력 잉크젯 헤드의 에너지 요구치를 줄이는 압전 과 정전기기반의 새로운 하이브리드 장치를 제안하고자 한다. 제안된 개념에서는 메니스커스는 전극 끝단에 형성이 되며, 전극의 끝단에 높은 변화도(gradient)의 정전기 전위가 생성된다. 잉크가 노즐 외부에 있기 때문에 좁은 채널로 인한 노즐 점성력은 상당히 감소한다. 잉크는 이미 가속되어 토출 직전의 끝단에 전달이 되기 때문에 잉크를 가속하는데 필요한 동적 압력도 역시 감소한다.
본 개념은 정전기력 잉크젯 토출을 위한 새로운 방식일 뿐만 아니라 토출을 제한하는 힘들을 줄이는 시도를 통하여 정전기력 잉크젯 공정을 최적화를 구현할 수 있는 기회를 부여한다. 또한, 본 논문에서는 액적의 토출에 대하여 사전 형성된 메니스커스 방식 과 정전기력 만으로 형성되는 메니스커스 방식 및 콘젯 방식에 의한 토출 액적의 크기를 비교 분석 하였으며, 제안된 새로운 개념은 토출 액적의 크기를 상당히 줄였으며 액적 생성을 위한 정전기 전위 또한 줄어 들었음을 증명하였다.
Author(s)
무하마드 아시프
Issued Date
2009
Awarded Date
2009. 8
Type
Dissertation
URI
http://dcoll.jejunu.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000004726
Alternative Author(s)
Muhammad Asif Ali Rehmani
Affiliation
제주대학교 대학원
Department
대학원 메카트로닉스공학과
Advisor
최경현
Table Of Contents
1 INTRODUCTION 3
1.1 Background ------------------------------------------------------------------------------------------------ 3
1.2 Motivation ------------------------------------------------------------------------------------------------- 4
1.3 Thesis Overview ------------------------------------------------------------------------------------------ 4

2 PRINTED ELECTRONICS 7
2.1 Introduction ----------------------------------------------------------------------------------------------- 7
2.2 Future Trend and Forecast ----------------------------------------------------------------------------- 9
2.3 Key Printed Technologies ------------------------------------------------------------------------------ 12
2.4 Inkjet Printing -------------------------------------------------------------------------------------------- 13
2.4.1 Thermal Inkjet -------------------------------------------------------------------------------------- 13
2.4.2 Piezoelectric Inkjet ----------------------------------------------------------------------------------- 14
2.4.2.1 Squeeze Mode PIJ --------------------------------------------------------------------- 15
2.4.2.2 Bend Mode PIJ ------------------------------------------------------------------------ 15
2.4.2.3 Push Mode PIJ ------------------------------------------------------------------------ 16
2.4.2.4 Shear mode actuator ------------------------------------------------------------------ 16
2.4.3 Electrostatic Inkjet ----------------------------------------------------------------------------------- 17
2.4.4 Comparison Drop-on-Demand Technology ------------------------------------------------------------ 18
2.5 Applications ----------------------------------------------------------------------------------------------- 18

3 ELECTROSTATIC PRINTING AND MENISCUS GENERATION 20
3.1 Related Work ---------------------------------------------------------------------------------------------- 20
3.2 Advantages of Electrostatic Inkjet Printing in PE -------------------------------------------------- 22
3.3 Meniscus Generation and its Role --------------------------------------------------------------------- 22
3.4 Printing and Meniscus Generation Strategies -------------------------------------------------------- 23
3.4.1 Constant flow regulated Inkjet Printing ---------------------------------------------------------------- 24
3.4.1.1 Problem Definition -------------------------------------------------------------------- 25
3.4.1.1.1 Varying Channel Width Geometry with Non-Tapered Supply Channel 25
3.4.1.1.2 Varying Channel Width Geometry with Tapered Supply Channel ----- 26
3.4.1.1.3 Electrokinetic assisted constant channel geometry ---------------------- 26
3.4.1.2 Electrokinetic Theoretical background ----------------------------------------------- 27
3.4.1.3 Numerical Estimation Parameters ---------------------------------------------------- 28
3.4.2 Piezoelectric Hybrid Inkjet System -------------------------------------------------------------------- 29
3.4.2.1 Problem Definition -------------------------------------------------------------------- 30
3.4.2.2 Theoretical Background --------------------------------------------------------------- 31
3.4.2.2.1 Piezo-electric Actuation --------------------------------------------------- 31
3.4.2.2.2 Electrostatic Actuation ---------------------------------------------------- 32
3.4.2.3 Numerical Estimation Parameters and Approach ----------------------------------- 36

4 RESULTS AND INTERPRETATION 37
4.1 Varying Channel Width Geometry with Non-Tapered Supply Channel ------------------------ 37
4.2 Varying Channel Width Geometry with Tapered Supply Channel ------------------------------- 39
4.3 Electrokinetic assisted constant channel geometry ------------------------------------------------- 41
4.4 Piezo-Electrostatic Hybrid Inkjet Head -------------------------------------------------------------- 46
4.4.1 Numerical Estimation of piezoelectric pressure generation ----------------------------------------------- 46
4.4.2 Numerical Estimation of Meniscus generation --------------------------------------------------------- 50
4.4.3 EHD numerical estimation of pre-developed meniscus droplet generation -------------------------------- 53
4.4.4 EHD numerical estimation of without meniscus developed droplet generation ---------------------------- 55

5 SUMMARY AND CONCLUSION 59
5.1 Conclusion for constant flowrate ---------------------------------------------------------------------- 59
5.2 Conclusion for Hybrid Piezo-Assisted ---------------------------------------------------------------- 60

References 61
Degree
Master
Publisher
제주대학교 대학원
Citation
무하마드 아시프. (2009). Meniscus Generation Methodologies of Electrostatic Inkjet for Printed Electronics
Appears in Collections:
Faculty of Applied Energy System > Mechatronics Engineering
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.