제주대학교 Repository

미역쇠, 진귤 및 제주조릿대의 항비만 효과에 관한 연구

Metadata Downloads
Alternative Title
Anti-obesity Effects of P etalonia binghamiae , Citrus sunki , and Sasa quelpaertensis
Abstract
PART 1. 갈조류인 미역쇠(P etalonia binghamiae )와 미역쇠에서 분리된 fucoxanthin의 항비만 효과
본 연구는 미역쇠 추출물과 미역쇠에서 분리한 fucoxanthin의 항비만 활성을 조사한 것이다.
첫째, 고지방식이로 유도된 비만 쥐에서 미역쇠 효소 추출물(PBEE)의 항비만 활성을 조사하였다. PBEE는 농도 의존적으로 전구지방세포의 adipogenesis를 억제시켰고, 분화중인 3T3-L1 전구지방세포에서 PPARγ, C/EBPα, aP2의 발현을
감소시켰다. 또한, 지방세포 분화의 mitotic clonal expansion 과정을 억제시켰고, 인슐린으로 자극된 성숙한 3T3-L1 지방세포에서 IRS의 인산화를 감소시킴으로써 포도당의 흡수를 억제시켰다. 그리고 PBEE는 고지방식이로 유도된 비만 쥐에서 항비만 효과를 나타냈다. 이 동물모델에서, 500mg/L의 PBEE가 첨가된 물을 30일간 먹인 결과 체중을 감소시켰고, 지방 저장도 감소되었다. 또한, PBEE는 혈청의 GPT, GOT를 감소시켰고, HDL 콜레스테롤은 증가시켰다. 더욱이, 고지방식이로 유도된 지방간에 나타나는 간조직의 지방구 축적을 감소시켰다. 종합해보면, PBEE는 배양된 세포에서 adipogenesis를 억제시키고 동물모델에서 비만을 억제시킨다는 것을 알 수 있다.
둘째, 고지방식이로 유도된 생쥐에서 미역쇠 에탄올 추출물(PBE)의 항비만 효과를 조사하였다. PBE는 체중 증가량, 지방조직 무게, 혈청의 중성지방을 감소시켰고, 고지방식이로 유도된 지방간에 나타나는 간조직의 지방구 뿐만 아니라 혈청의 GPT, GOT를 감소시켰다. 중요한 것은, PBE는 부고환 지방조직에서 AMPK와 ACC의 인산화를 증가시켰다는 것이다. 이러한 in vivo 결과와 일치하게도, PBE는 성숙한 3T3-L1 지방세포에서 AMPK와 ACC의 인산화를 증가시켰고, SREBP1c 발현은 감소시켰다. 이 결과들은 PBE가 지방산 β-산화의 향상과lipogenesis의 감소를 통해 항비만 효과를 발휘한다는 것을 알 수 있다.
셋째, 3T3-L1 전구지방세포의 세 가지의 분화 단계에서 adipogenesis에 미역쇠에서 유래된 fucoxanthin의 효과를 조사하였다. 3T3-L1 전구지방세포의 분화과정은 이른 단계 (day 0-2, D0-D2), 중간 단계 (day 2-4, D2-D4), 늦은 단계 (day 4-, D4-)로 나뉜다. Fucoxanthin을 이른 단계(D0-D2)에 처리하였을 때3T3-L1 지방세포의 분화를 향상시켰다. 또한 PPARγ, C/EBPα, SREBP1c, aP2의 단백질 발현을 증가시켰고, adiponectin의 mRNA 발현 또한 증가시켰다. 하지만, fucoxanthin은 중간 단계(D2-D4)와 늦은 단계(D4-D7) 동안은 PPARγ, C/EBPα, SREBP1c의 단백질 발현을 감소시켰다. 또한, IRS의 인산화의 감소를통해 성숙한 3T3-L1 지방세포에서 포도당 흡수를 억제시켰다. 더욱이, 성숙한3T3-L1 지방세포에서 LKB1, AMPK, ACC의 인산화를 증가시켰다. 이 결과들은
fucoxanthin이 3T3-L1의 분화 단계에 따라 다양한 효과를 발휘하며, 포도당 흡수를 억제할 뿐만 아니라 지방산 β-산화를 향상시킨다는 것을 알 수 있다.
종합해보면, 고지방식이로 유도된 비만 모델에서 미역쇠 추출물의 항비만 효과는 fucoxanthin의 활성을 통한 효과라 사료된다.
PART 2. 미성숙 진귤(Citrus sunki ) 과피와 진귤 과피에서 분리된sinensetin의 항비만 효과진귤 과피는 아시아에서 소화 불량, 기관지 천식 같은 많은 질병을 치료하데 널리 사용했던 전통적인 약제이다. 이에 미성숙 진귤 과피 에탄올 추출물(CSE)
과 진귤 과피에서 유래된 sinensetin의 항비만 활성을 조사하였다.
첫째, 고지방식이로 유도된 C57BL/6 생쥐와 성숙한 3T3-L1 지방세포를 이용하여 CSE의 항비만 효과를 조사하였다. 동물실험에서, CSE는 고지방식이 대조군(HFD)에 비해 체중증가량, 지방조직 무게, 혈청의 콜레스테롤, 중성지방을 유의적으로 감소시켰다. 또한 CSE는 혈청의 GPT, GOT, LDH를 감소시켰다. 더욱이, 고지방식이로 유도된 지방간에 나타나는 간조직의 지방구 축적을 감소시켰다. CSE는 부고환 지방조직에서 지방산 β-산화에 관여하는 AMPK와 ACC의 인산화를 증가시켰을 뿐만 아니라 성숙한 3T3-L1 지방세포에서 AMPK, ACC의 인산화를 증가시켰다. 더욱이, 성숙한 지방세포에서 PKA와 HSL의 인산화에 의해 lipolysis를 향상시켰다. 이 결과들은 CSE가 lipolysis와 지방산 β-산화의 증가를 통해 항비만 효과를 갖는다는 것을 알 수 있다.
둘째, sinensetin은 감귤류에서 발견되는 폴리메톡시 플라본이다. 3T3-L1 세포에서 폴리메톡시 플라본이 풍부하게 들어있는 Citurs sunki 추출물에서 분리한 sinensetin의 지질대사에 관한 효과를 조사하였다. Sinensetin은 3T3-L1 전구지방세포를 IBMX가 포함되지 않은 분화유도 배지에 배양하였을 때 PPARγ, C/EBPα, β, aP2의 발현을 증가시켰다. Sinensetin은 C/EBPβ의 발현에 중요한 역할을 하는 CREB의 활성과 C/EBPβ의 활성에 중요한 역할을 하는 ERK의 활성을 증가시켰을 뿐만 아니라, 분화중인 3T3-L1 세포에서 세포질내 cAMP를 증
가시킴으로써 PKA의 활성을 증가시켰다. 더욱이, sinensetin은 성숙한 3T3-L1 지방세포에서 cAMP 경로에 의해 자극되는 lipolysis를 자극하였고, SREBP1c의 발현을 감소시켰으며, IRS와 Akt의 활성을 감소시킴으로써 포도당 흡수를 감소시켰다. 또한, 지방산 산화와 관련된 AMPK, ACC 활성화와 CPT-1a의 발현을증가시킴으로써 지방산 산화를 증가시켰다. 종합해보면, 고지방식이로 유도된 비만 모델에서 미성숙 진귤 과피 추출물의
항비만 효과의 일부는 sinensetin에 기인한다고 사료된다.
PART 3. 제주조릿대(Sasa quelpaertensis) 잎의 항비만 효과
몇몇 조릿대 종들의 잎은 항산화, 항종양, apoptosis, 인슐린 저항성 개선 효과와 같은 약리작용을 발휘한다. 저자는 고지방식이로 유도된 C57BL/6 생쥐와 성숙한 3T3-L1 지방세포를 이용하여 제주조릿대 잎 열수 추출물(SQE)의 항비만활성을 조사하였다. SQE를 70일간 고지방식이 군에 먹인 결과 대조군(HFD)에비해 체중증가량, 지방조직 무게, 혈청의 콜레스테롤 및 중성지방을 유의적으로 감소시키는 것을 확인하였다. SQE는 혈청에서 GPT, GOT, LDH를 감소시켰고, 고지방식이로 유도된 지방간에 나타나는 간조직의 지방구 축적을 감소시켰다. 또한, SQE는 부고환 지방조직에서 지방산 β-산화에 관여하는 AMPK와 ACC의 인산화를 증가시켰다. 추가적으로, SQE는 성숙한 3T3-L1 지방세포에서 AMPK, ACC의 인산화를 증가시켰다. 이 결과들은 SQE가 지방산 β-산화의 증가와 간조직에서 지방구 축적을 감소시킴으로써 항비만 효과를 나타낸다고 사료된다.
Part 1. Anti-obesity effect of brown algae P etalonia binghamiae and fucoxanthin derived from it In this study, we reported that anti-obesity effects of Petalonia binghamiae extracts and fucoxanthin isolated from P. binghamiae. Firstly, the anti-obesity properties of the enzymatic digestion extrat (PBEE) in high-fat-diet (HFD)-induced obese rats were investigated. PBEEinhibits preadipocyte differentiation and adipogenesis in a dose-dependent manner. In differentiating 3T3-L1 preadipocytes, it decreased the expression of peroxisome proliferator activated receptor (RPAR) γ, CCAAT/enhancer binding proteins (C/EBP) α, and fatty-acid-binding protein aP2. It also inhibited the mitotic clonal expansion process of adipocyte differentiation, and it inhibited insulin-stimulated uptake of glucose into mature 3T3-L1 adipocytes by reducing phosphorylation of insulin receptor substrate (IRS). In rats with high-fat-diet (HFD)-induced obesity, PBEE exhibited potent anti-obesity effects. In this animal model, increases in body weight and fat storage were suppressed by the addition of PBEE to the drinking water at 500 mg/L for 30 days. PBEE supplementation reduced serum levels of glutamic pyruvic transaminases (GPT) and glutamic oxaloacetic transaminases (GOT) and increased the serum level of high density lipoprotein (HDL)-cholesterol. Moreover, it significantly decreased the accumulation of lipid droplets in liver tissue, suggesting a protective effect against HFD-induced hepatic steatosis.
Secondly, the anti-obesity properties of the ethanolic extract of P. binghamiae (PBE) in HFD-induced obese mice were investigated. The PBE (150 mg/kg/day) administration decreased body weight gain, adipose tissue weight, and serum triglyceride. It also reduced serum levels of glutamic pyruvic transaminases and glutamic oxaloacetic transaminases, as well as the accumulation of fatty droplets in liver tissue, suggesting a protective effect against HFD-induced hepatic steatosis. Importantly, PBE dministration restored the HFD-induced decrease of the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in the epididymal adipose tissue. Consistent with in vivo data, PBE increased AMPK and ACC phosphorylation, while it decreased the expression SREBP1c in mature 3T3-L1 adipocytes. These results suggest that PBE exert the anti-obesity properties via promoting β-oxidation and reducing lipogenesis.
Thirdly, I investigated the effects of fucoxanthin, derived from the edible brown seaweed P. binghamiae, on adipogenesis during the three differentiations targets of 3T3-L1 preadipocytes. Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0-2, D0-D2), intermediate (days 2-4, D2-D4), and late stages (day 4 onwards, D4-). When fucoxanthin was applied during the early stage of differentiation (D0-D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of PPAR γ, C/EBPα, sterol regulatory element binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPARγ, C/EBPα, and SREBP1c during the intermediate (D2-D4) and late stages (D4-D7) of differentiation. It also inhibited the glucose uptake in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate (IRS).
Moreover, fucoxanthin increased the phosphorylation of LKB1, AMPK, and ACC in mature 3T3-L1 adipocytes. These results suggest that fucoxanthinexerts differing effects on 3T3-L1 cells of different differentiation stages.
Moreover, fucoxanthin inhibits glucose uptake and enhances fatty acid β-oxidation in mature adipocytes.
Taken together, our findings suggested that anti-obesity effects of Petalonia binghamiae in HFD-induced obesity animal might attributed partly to fucoxanthin.
Part 2. Anti-obesity effect of the immature Citrus sunki peel and sinensetin derived from it The peel of Citrus sunki Hort. ex Tanaka has been widely used in traditional Asian medicine for the treatment of many diseases, including indigestion and bronchial asthma. In this study, we reported the anti-obesity effects of immature C. sunki extract (CSE) and sinensetin isolated from immature C. sunki peel.
Firstly, the anti-obesity activity of CSE using HFD-induced obese C57BL/6 mice and mature 3T3-L1 adipocytes were investigated. In the animal study, body weight gain, adipose tissue weight, serum total cholesterol, and triglyceride in the CSE (150 mg/kg/day)-administered group decreased significantly compared to the HFD group. Also, CSE supplementation reduced serum levels of glutamic pyruvic transaminases, glutamic oxaloacetic transaminases, and lactate dehydrogenase. Moreover, it decreased the accumulation of fatty droplets in liver tissue, suggesting a protective effect against HFD-induced hepatic steatosis. Dietary supplementation with CSE reversed the HFD-induced decrease in the phosphorylation levels of AMPK and ACC, which are related to fatty acid β-oxidation, in the epididymal adipose tissue. Also, CSE increased AMPK and ACC phosphorylation in mature 3T3-L1 adipocytes. CSE also enhanced lipolysis by phosphorylation of PKA and HSL in mature 3T3-L1 adipocytes. These results suggested that CSE had an anti-obesity effect via elevated lipolysis and fatty acid β-oxidation in adipose tissue.
Secondly, sinensetin is a rate polymethoxylated flavone (PMF) found in certain citrus fruits. I investigated the effects of sinensetin isolated from PMF-rich Citrus sunki peel on lipid metabolism in 3T3-L1 cells. Sinensetin promoted adipogenesis in 3T3-L1 preadipocytes growing in incomplete differentiation medium, which did not contain 3-isobutyl-1-methylxanthine (IBMX). It also up-regulated the expression of the adipogenic transcription factors PPARγ, C/EBPα and β, and fatty-acid-binding protein aP2. The activation of cAMP-responsive element binding protein (CREB), which play important roles in C/EBPβ expression and extracellular signal-regulated kinase (ERK), which plays important roles in C/EBPβ activation, was also potentiated by sinensetin. Sinensetin enhanced the phosphorylation of protein kinase A (PKA) and hormone sensitive lipase (HSL), indicating its lipolytic effects via cAMP-mediated signaling pathway. Also, sinensetin down regulated the expression of sterol regulatory element-binding protein 1c (SREBP1c). It also inhibited glucose uptake in a dose-dependent manner, and decreased the phosphorylation of IRS and Akt. Futhermore, sinensetin increased phosphorylation of AMPK and ACC, which is related to fatty acid β-oxidation. Its also up regulated mRNA expression of carnitine palmitoyltransferase-1a, suggesting that sinesetin enhanced fatty acid β-oxidation through AMPK pathway.
Taken together, our findings demonstrated that anti-obesity effects of Citurs sunki in HFD-induced obesity animal might attributed partly to sinensetin.
Part 3. Anti-obesity effect of Sasa quelpaertensis leaf
The leaves of several Sasa species have been shown to exert a number of pharmacological effects, such as anti-oxidant and anti-tumor effects, apoptosis, and improvement of insulin resistance activities. In this study, we explored the anti-obesity activity of Sasa quelpaertensis leaf extract (SQE) in HFD-induced obese C57BL/6 mice and mature 3T3-L1 adipocytes. The administration of SQE (150 mg/kg/day) with a HFD for 70 days significantly decreased body weight gain, adipose tissue weight, and serum total cholesterol and triglyceride levels in comparison with the HFD group. SQE reduced serum levels of glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, and lactate dehydrogenase and the accumulation of fatty droplets in liver tissue, suggesting a protective effect against HFD-induced hepatic steatosis. SQE also restored the HFD-induced decreases in the phosphorylation of AMPK and ACC protein levels, which are related to fatty acid β-oxidation, in epididymal adipose tissue. In addition, SQE induced AMPK and ACC phosphorylation in mature 3T3-L1 adipocytes. This study reported, for the first time, that SQE might have an anti-obesity effect in a rodent model of HFD-induced obesity through the activation of the AMPK pathway in adipose tissue and the reduction of fatty droplet accumulation in liver tissue.
Author(s)
강성일
Issued Date
2011
Awarded Date
2012. 2
Type
Dissertation
URI
http://dcoll.jejunu.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000005810
Alternative Author(s)
Kang, Seong Il
Affiliation
제주대학교
Department
대학원 생명과학과
Advisor
김세재
Table Of Contents
B A C K G R O U N D 1
A B S T R A C T 4
C O N T E N T S 9
LIST OF ABBREVIATIONS 16
P A R T 1 19
Anti-obesity effect of brown algae P etalonia binghamiae and fucoxanthin derived from it
1.1 LIST OF TABLES 20
1.2. LIST OF FIGURES 21
1.3 INTRODUCTION 25
1.4 MATERIALS AND METHODS 30
1.4.1 Reagents 30
1.4.2 Preparation of a water-soluble extract of Petalonia binghamiae (PBEE) 30
1.4.3 Preparation of Petalonia binghamiae ethanol extract (PBE) 31
1.4.4 Preparation of fucoxanthin from Petalonia binghamiae 31
1.4.5 Cell culture and differentiation 34
1.4.5.1 Differentiation Ⅰ 34
1.4.5.2 Differentiation Ⅱ 34
1.4.6 Cell viability and cytotoxicity 34
1.4.7 Oil Red O stanining and cell quantification 35
1.4.8 Western blot analysis 35
1.4.9 RNA preparation and quantitative real-time RT-PCR analysis 36
1.4.10 Flow cytometric analysis of the cell cycle 37
1.4.11 Lipolysis assay 37
1.4.12 Glucose uptake activity assay 38
1.4.13 Animals 38
1.4.14 Measurement of body weight, epididymal adipose tissue weight, and food and water inkake 40
1.4.15 Biochemical analysis 40
1.4.16 Histology 41
1.4.17 Statistical analysis 42
1.5 RESULTS 43
1.5.1 Anti-obesity effect of Petalonia binghamiae enzymetic extract (PBEE) 43
1.5.1.1 PBEE inhibits 3T3-L1 adipocyte differentiation by modulating the expression of key transcriptional regulators 43
1.5.1.2 PBEE blocks cell cycle progreiion in 3T3-L1 cells 48
1.5.1.3 PBEE inhibits glucose uptake by 3T3-L1 adipocytes 50
1.5.1.4 PBEE prevents high-fat-diet (HFD)-induced obesity 53
1.5.1.5 PBEE dramatically decreases signs of liver pathology 55
1.5.2 Anti-obesity effect of Petalonia binghamiae ethanolic extract (PBE) 58
1.5.2.1 PBE ameliorated high-fat-diet (HFD)-inducd obesity 58
1.5.2.2 PBE reduced damage of liver in high-fat-diet (HFD) -induced obese mice 66
1.5.2.3 PBE reduced the expression of SREBP1c and activated the AMPK pathway in mature 3T3-L1 adipocytes 69
1.5.3 Anti-obesity effect of Fucoxanthin derived from PBE 74
1.5.3.1 Fucoxanthin enhances 3T3-L1 adipocyte differentiation at an early stage 74
1.5.3.2 Fucoxanthin inhibits adipocyte differentiation at intermediate and late stages 79
1.5.3.3 Fucoxanthin inhibits glucose uptake in mature 3T3-L 1 adipocytes 82
1.5.3.4 Fucoxanthin activated the AMPK pathway in mature 3T3-L1 adipocytes 87
1.6 DISCUSSEION 90
1.6.1 Anti-obesity effect of Petalonia binghamiae enzymetic extract (PBEE) 90
1.6.2 Anti-obesity effect of Petalonia binghamiae ethanolic extract (PBE) 94
1.6.3 Anti-obesity effect of Fucoxanthin derived from PBE 97
P A R T 2 100
Anti-obesity effect of the immature Citrus sunki peel and sinensetin derived from it
2.1 LIST OF TABLES 101
2.2. LIST OF FIGURES 102
2.3 INTRODUCTION 106
2.4 MATERIALS AND METHODS 110
2.4.1 Reagents 110
2.4.2 Preparation of immature Citrus sunki peel extract (CSE) 111
2.4.3 Animals 115
2.4.4 Measurement of body weight, food intake, liver weight epididymal adipose tissue weight, and perirenal adipose tissue weight 115
2.4.5 Biochemical analysis 115
2.4.6 Histology 116
2.4.7 Cell culture and differentiation 116
2.4.7.1 Differentiation Ⅰ 116
2.4.7.2 Differentiation Ⅱ 117
2.4.8 Cell viability and cytotoxicity 117
2.4.9 Oil Red O stanining and cell quantification 118
2.4.10 Western blot analysis 118
2.4.11 RNA preparation and quantitative real-time RT-PCR analysis 119
2.4.12 Lipolysis assay 120
2.4.13 Glucose uptake activity assay 120
2.4.14 Measurement of cellular cAMP levels 121
2.4.15 Statistical analysis 121
2.5 RESULTS 122
2.5.1 Anti-obesity effect of Citrus sunki ethanolic extract (CSE) 122
2.5.1.1 CSE improved high-fat-diet (HFD)-induced obesity 122
2.5.1.2 CSE reduced damage of liver in high-fat-diet (HFD) -induced obese mice 127
2.5.1.3 CSE restored AMPK phosphorylation and adiponectin expression in epididymal adipose tissue 131
2.5.1.4 CSE activated the AMPK pathway in mature 3T3-L 1 adipocyte 134
2.5.1.5 CSE activated the PKA pathway in mature 3T3-L 1 adipocyte 139
2.5.2 Anti-obesity effect of Sinensetin derived from CSE 142
2.5.2.1 Sinensetin enhances adipogenesis in 3T3-L1 preadipocyte in the absence of IBMX 142
2.5.2.2 Sinensetin activates 3T3-L1 adipocyte differentiation signal at an early stage 146
2.5.2.3 Sinensetin stimulates lipolysis in mature 3T3-L 1 adipocytes 152
2.5.2.4 Sinensetin inhibits glucose uptake and lipogenesis in mature 3T3-L1 adipocyte 156
2.5.2.5 Sinensetin activated the fatty acid β-oxidation in mature 3T3-L1 adipocyte 161
2.6 DISCUSSEION 165
2.6.1 Anti-obesity effect of Citrus sunki ethanolic extract (CSE) 165
2.6.2 Anti-obesity effect of Sinensetin derived from CSE 169
P A R T 3 174
Anti-obesity effect of the Sasa quelpaertensis leaf
3.1 LIST OF TABLES 175
3.2. LIST OF FIGURES 176
3.3 INTRODUCTION 178
3.4 MATERIALS AND METHODS 180
3.4.1 Reagents 180
3.4.2 Preparation of Sasa quelpaertensis extract (SQE) and HPLC analysis 180
3.4.3 Animals 184
3.4.4 Measurement of body weight, food intake, liver weight epididymal adipose tissue weight, pnd perirenal adipose tissue weight 184
3.4.5 Biochemical analysis 184
3.4.6 Histology 185
3.4.7 Cell culture and differentiation 185
3.4.8 Cell viability and cytotoxicity 186
3.4.9 Western blot analysis 187
3.4.10 RNA preparation and quantitative real-time RT-PCR analysis 187
3.4.11 Statistical analysis 188
3.5 RESULTS 189
3.5.1 Anti-obesity effect of Sasa quelpaertensis aqueous extract (SQE) 189
3.5.1.1 SQE improved high-fat-diet (HFD)-induced obesity 189
3.5.1.2 SQE reduced damage of liver in high-fat-diet (HFD) -induced obese mice 195
3.5.1.3 SQE restored AMPK phosphorylation and adiponectin expression in epididymal adipose tissue 198
3.5.1.4 SQE activated the AMPK pathway in mature 3T3-L 1 adipocyte 201
3.6 DISCUSSEION 205
3.6.1 Anti-obesity effect of Sasa quelpaertensis aqueous extract (SQE) 205
C O N C L U S I O N 208
R E F E R E N C E S 210
배 경 / 요 약 224
Degree
Doctor
Publisher
제주대학교 대학원
Citation
강성일. (2011). 미역쇠, 진귤 및 제주조릿대의 항비만 효과에 관한 연구
Appears in Collections:
General Graduate School > Biology
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.