제주대학교 Repository

Graphene oxide and Graphene nanosheets: Tunable properties and multifunctional applications

Metadata Downloads
Abstract
산화 그래핀(GO) 나노시트는 물성물리 및 응용분야에서 매우 중요한 차세대 전자재료로서 기대되고 있다. 산화 그래핀은 1859년 Brodie에 의해 처음 제작된 이후로 활발히 연구되어 왔지만, GO의 화학적 특성은 이질적이고 비결정적인 특성 때문에 이론적 및 실험적으로 정확하게 설명하기 어려운 부분이 과제로 남아있다. 본 학위논문에서는, 그래핀 내의 산화 농도에 따라서 조절 가능한 산화그래핀의 성질 및 특성을 이해하기 위하여 산화농도에 따른 GO의 화학적, 구조적인 특징들에 관하여 연구를 수행하였다. 또한, GO의 산화농도에 따른 구조적 및 전기화학적인 특성 의존성을 조사하였다.

본 연구에서는 전자재료 및 전자산업에서 응용이 촉망 받고 있는 그래핀 나노시트의 GO를 환원시키기 위한 주요실험으로써는 4가지 제작방법을 시도하였다. 첫번째는 쉽고 빠르게 실험할 수 있는 초음파법을 사용하였고, 두번째로 저비용과 고효율적인 방법으로 실험하기 위하여 수열합성법을 이용하였다. 또한 생합성 방법(biosynthesis), 그리고 마지막으로 저온, 무독성적인 실험을 위하여 수소 플라즈마(hydrogen plsma) 조사방법을 사용하여 실험하였다. 그리고 상기에서 기술한 네가지 방법으로 제작된 그래핀 및 산화그래핀은 스펙트럼 분석법(spectroscopic techniques)을 주로 하여 실험 및 해석을 하였다.

또한, 광촉매 분야내의 GO 나노시트의 응용 가능성을 검토하기 위하여 자외선영역에서의 레사주린 (resazurin)이 GO의 작용기에 의해 레소루핀(resorufin)으로 변화하는 양상에 대하여 실험적으로 측정하고 비교 설명하였다. 또한, GO의 항균력과 실용적인 응용을 위한 항균 섬유를 제작하여 그 특성을 조사하여 보고 하였으며, 금속부식을 보호하기 위한 GO박막의 방식특성에 대하여 전기화학적 특성분석을 이용하여 조사하였다. 수열합성법에 의해 제작된 그래핀 나노시트의 항균력에 대하여 연구하였으며, 수소플라즈마(hydrogen plasma)방법에 의해 제작된 그래핀 나노시트의 차세대 저장소자인 슈퍼커패시터 적용에 관하여 조사하였다.

대표적인 응용분야로써, 볼 분쇄기(ball milling) 를 이용하여 경제적이고 대량생산이 가능한 무독성 GO 나노페인트를 제작하였다. 그리고 산과 염소를 포함하는 해수 분위기에서 금속부식을 보호하기 위한 GO 나노페인트의 전기화학적 특성에 대하여 조사 및 분석하였으며 그 실용적인 적용가능성에 대하여 조사하였다. 이와 같은 연구성과는 GO나노페인트를 병원 및 위생시설에서 이용하였을 경우에 GO의 항박테리아 특성에 의하여 지금까지 개발된 상품보다도 친환경, 친위생의 우수한 특성의 상품개발가능성을 보고하였으며, 원천기술확보 및 상품화를 시도하고 있다.
Graphene oxide nanosheets become a hot material in material science. Eventhough, this material is well known since 1859 when it was first synthesized by Brodie, the chemistry of this material is not well understood mainly due to its heterogenous and amorphous nature. In this dissertation, a detailed analysis of the chemical and structural investigation of graphene oxide (GO) with different oxidation level was demonstrated in order to understand the types of oxygenated functional groups formed in GO. The surface and electrochemical properties of GO was signi?cantly tuned by controlling the oxidation level.
Different types of reduction routes were employed to synthesize graphene, a well known exciting material in the electronic industry. A facile, and fast method for the reduction of GO into graphene nanosheets using ultrasonic method was demonstrated. A cost effective and efficient route to the synthesis of graphene using hydrothermal method was illustrated. The use of biological reducing agent (galactose) for the reduction of GO was reported. A low temperature, non toxic route for the reduction of GO by hydrogen plasma reduction using a dielectric barrier discharge reactor was developed. A detailed analysis of the graphene synthesized by various routes has been performed with the aid of spectroscopic techniques.
The application of GO nanosheets in the field of photocatalysis was investigated by the measuring the photoreduction of resazurin into resorufin under UV- light irradiation. The antibacterial activity of GO against bacteria and their application in the fabrication of functional antimicrobial textiles was presented. The application of GO thin films for the prevention of metal corrosion has been studied using electrochemical studies. The antibacterial activity of graphene nanosheets (hydrothermal method) evaluated against pathogenic bacteria by measuring the minimum inhibitory concentration and the results shows their pronounced toxicity towards bacteria. The application of graphene nanosheets (plasma method) towards energy storage devices was examined.
Utilizing nanostructured materials on the road to the development of commercial products with exceptional properties have been rapidly increasing in this decade. Here, we demonstrate the preparation of graphene oxide (GO) paint by entrenching GO nanosheets in alkyd resin using the ball milling method. The intermolecular cross-linking occurred between GO and the lipid chains present in the alkyd resin results in rapid drying time, high-gloss surface and good hiding power of GO paint. The paint formulation with suitable nontoxic additives and their key role in the drying process are discussed. The GO paint coating exhibited corrosion-resistant behavior both in acidic and salt media as examined by immersion and electrochemical corrosion test. It also inhibited the bacterial growth on its surface ensuring the biomedical application of the GO paint. Overall, this strategy for the development of environmentally benign GO paint will create new horizon into the coating industry.
Author(s)
Karthikeyan Krishnamoorthy
Issued Date
2013
Awarded Date
2013. 2
Type
Dissertation
URI
http://dcoll.jejunu.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000006170
Affiliation
제주대학교 대학원
Department
대학원 기계공학과
Advisor
김상재
Table Of Contents
I Introduction 1
1.1 Graphene oxide nanosheets 1
1.2 Synthesis of graphene oxide nanosheets 2
1.3 Structure of graphene oxide nanosheets 4
1.4 Properties of graphene oxide nanosheets 5
1.5 Chemically reduced graphene oxide nanosheets / graphene nanosheets 6
1.6 Applications of graphene oxide and chemically reduced graphene oxide nanosheets 8
1.7 Focus of current research 10
1.8 References 13
II Experimental Methods 18
2.1 Introduction 18
2.2 Materials used 18
2.3 Synthesis of graphene oxide nanosheets 18
2.4 Synthesis of graphene oxide with various degree of oxidation 19
2.5 Synthesis of graphene by sonochemical method 19
2.6 Synthesis of graphene by hydrothermal method 20
2.7 Synthesis of graphene by D-galactose 20
2.8. Plasma assisted reduction of graphene oxide 21
2.9 Instrumentation 22
2.10 Electrochemical measurements of GO with various oxidation levels 23
2.11 Measurement of photocatalytic activity of GO nanosheets 24
2.12 Antibacterial activity of GO nanosheets & functional textiles 24
2.13 Corrosion inhibition studies of GO thin films 28
2.14 Antibacterial activity of graphene nanosheets 29
2.15 Supercapacitor performance of graphene nanosheets 30
2.16 GO nanopaint ? preparation, coating and characterization 30
Reference 36
III Results and discussion 38
3.1 Graphene oxide nanosheets ? physico-chemical
characterization 39
3.2 Tunable properties of graphene oxide by various degree of oxidation 47
3.3 Sonochemically synthesized graphene 66
3.4 Hydrothermally synthesized graphene 76
3.5 Graphene synthesized by D-galactose 86
3.6 Plasma assisted reduced of GO into graphene 95
3.7 Conclusion 98
References 99
IV Application of graphene oxide and graphene nanosheets 106
4.1 Photocatalytic application of graphene oxide 107
4.2 Antibacterial properties of graphene oxide and their
application in development of functional textiles 112
4.3 Corrosion inhibition application of graphene oxide thin films 120
4.4 Antibacterial applications of graphene nanosheets 125
4.5 Supercapacitor applications of graphene nanosheets 129
4.6 Conclusion 132
References 133
V Development of graphene oxide nanopaint for multifunctional applications. 138
5.1 Introduction 138
5.2 Results and discussion 140
5.2.1. Mechanism of drying and role of additives in GO nanopaint 142
5.2.2. Properties of GO nanopaint 143
5.2.3 Spectroscopic characterization of GO nanopaint 146
5.2.4 Corrosion in acidic media 150
5.2.5 Electrochemical corrosion test in NaCl media 152
5.2.6 Antibacterial applications of GO nanopaint 154
5.2.7 Marine antifouling experiments 156
5.3 Conclusion 157
References 158
VI Summary 162
APPENDIX 164
Degree
Doctor
Publisher
제주대학교
Citation
Karthikeyan Krishnamoorthy. (2013). Graphene oxide and Graphene nanosheets: Tunable properties and multifunctional applications
Appears in Collections:
Faculty of Applied Energy System > Mechanical Enginering
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.