제주대학교 Repository

소듐-공기 열교환기 굴뚝 설계를 위한 자연대류 열전달에 관한 연구

Metadata Downloads
Abstract
The SFR(Sodium-cooled Fast Reactor) has attracted increasing attention recently as it provides means for efficient utilization of uranium resources and reduction of radioactive wastes.
In order to meet one of the Gen Ⅳ SFR technology goals of dramatic improvement of safety, a PDRC(Passive Decay Heat Removal Circuit) was adopted. Sodium-Air Heat Exchanger(AHX) is a part of the PDRC, which is one of the essential characteristic design concepts of the Gen Ⅳ SFR. The AHX is composed of helical tube banks in the chimney. The natural convective air flow driven by the heat transfer from the helical tube interacts with the chimney and leads to a complex phenomenological behavior.
There were only a few experimental investigations on the natural convection heat transfer for chimney effect, and most of previous studies have been performed numerically. In this study, using analogy concept for heat transfer and mass transfer, the natural convective heat transfer phenomena in a chimney-system were simulated by mass transfer experiments. And the applicability of the experimental methodology was identified by numerical analysis using FLUENT.
The present works are divided into four steps. Firstly, the velocity of flow in the chimney and Nusselt number were calculated theoretically using simplified balance equation approach. Secondly, to know whole phenomena, preliminary experiments were carried out. Through those two steps, it was found that the increase of the exit length caused by the chimney enhanced the heat transfer up to a certain chimney height(effective length). This effective length was determined by the balance of acceleration driven by buoyancy and the deceleration due to the friction between fluid and wall of the chimney.
Thirdly, through the comparison between the mass transfer experiment and the numerical analysis, the validity and applicability for analogy experimental method was confirmed. The temperature and velocity profiles of the numerical simulations near the heated wall with and without the anodes in the middle of the chimney, was quite similar. Thus it was concluded that the mass transfer experiment with the anode in the middle of the chimney can predict the real phenomena.
Finally, what happened to the effective length and the heat transfer in the chimney-system was demonstrated depending on extension and expansion ratios, heat input, and cross-sectional shape of the chimney. The heat transfer was enhanced with the increase in extension ratio up to a certain length (effective length). As the expansion ratio increases, the heat transfer rates decreases and the effective length increases. The effective length increases with the heat input. The effective length was same regardless of the cross-sectional shape of the chimney.
This study has significance in a few senses. Firstly it is one of the rare studies using experimental means. Secondly, it provides theoretical background of extending the applicability of the analogy experimental method using the electroplating system. Thirdly, the experiments were performed for high Grashof numbers.
Author(s)
임철규
Issued Date
2013
Awarded Date
2013. 2
Type
Dissertation
URI
http://dcoll.jejunu.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000006267
Alternative Author(s)
Lim, Chul Kyu
Affiliation
제주대학교 대학원
Department
대학원 에너지공학과
Advisor
정범진
Table Of Contents
Ⅰ. 서 론 1
Ⅱ. 이론적 배경 3
1. 굴뚝효과(Chimney effect) 현상 3
2. 기존 연구들의 한계 5
3. 현상론(문헌조사) 7
1) 굴뚝길이 또는 확장비(Extension ratio)의 영향 7
(1) 가열벽면의 온도분포(Wall temperature profile) 8
(2) 질량유량률(Mass flow rate) 9
(3) 속도 분포(Velocity profile) 10
(4) 온도 분포(Temperature profile) 11
(5) 압력 분포(Pressure profile) 12
2) 굴뚝 폭 또는 팽창비(Expansion ratio)의 영향 13
(1) 굴뚝효과를 약화시키는 Inflow(Down-flow) 13
(2) 가열벽면의 온도분포(Wall temperature profile) 15
(3) 질량유량률(Mass flow rate) 16
(4) 속도 분포(Velocity profile) 17
(5) 온도 분포(Temperature profile) 18
3) 단열 입구길이(Unheated entrance)의 영향 20
(1) 가열벽면의 온도분포(Wall temperature profile) 20
(2) 질량유량률(Mass flow rate) 21
(3) 속도 분포(Velocity profile) 22
(4) 온도 분포(Temperature profile) 23
(5) 압력 분포(Pressure profile) 23
4. 열전달과 물질전달의 상사성 25
1) 상사성 25
2) 열전달과 물질전달의 상사성 25
5. 전기도금계 27
1) 물질전달 구조 27
2) 한계전류 기법 30
3) 무차원수 및 물성치 33
Ⅲ. 굴뚝내 유동속도(v) 및 Nusselt 수 평가 35
1. 굴뚝내 유동순환 35
2. 운동량과 유체-에너지 보존 36
1) 운동량보존(Momentum conservation) 36
2) 유체-에너지 보존(Fluid-Energy conservation) 37
3. 순서도(Flow-chart) 38
4. 출구길이(Exit length)에 따른 유속계산 과정 39
1) 초기속도 계산 39
2) 연전달계수 도출 및 유체-에너지 수지(Fluid-Energy balance) 39
3) 기본 물리량 및 데이터 41
4) 출구길이에 따른 유속계산 41
5) 도관내 유동효과(Self-chimney effect) 42
5. 평균 Nusselt 수 42
6. 유효길이(Effective length)의 결정 44
Ⅳ. 예비실험 46
1. 실험장치 및 실험범위 46
2. 실험결과 및 고찰 47
Ⅴ. 수치해석 : 상사성 실험방법론에 대한 타당성 및 적용가능성 확인 및 굴뚝내 열전달 현상 연구 52
1. 수치해석 범위 및 기하구조 53
2. 물질전달 실험과 FLUENT 시뮬레이션 결과 비교 55
1) 평균 Nusselt 수 비교 55
2) 양극봉(Cold-rod) 유무에 대한 수치해석 결과 비교 56
3. 실제 굴뚝내 열전달 현상 61
1) 속도벡터(Velocity vector) 61
2) 속도분포(Velocity profile) 63
(1) 가열부내(In the heated cylinder) 63
(2) 굴뚝내(In the chimney) 66
3) 온도분포(Temperature profile) 68
(1) 가열부내(In the heated cylinder) 68
(2) 굴뚝내(In the chimney) 70
4) 전단응력(Wall shear stress) 71
5) 국부 Nusselt 수 72
6) 압력분포(Pressure profile) 73
Ⅵ. 본 실험 75
1. 실험장치 구성 75
2. 실험방법 및 절차 79
1) 실험방법 79
2) 실험절차 79
3. 실험범위 80
4. 실험결과 및 고찰 82
1) 확장비 및 팽창비에 따른 영향 82
2) 가열부 온도에 따른 영향 83
3) 굴뚝 단면적에 따른 영향 84
Ⅵ. 결 론 86

참 고 문 헌 89
Degree
Master
Publisher
제주대학교
Citation
임철규. (2013). 소듐-공기 열교환기 굴뚝 설계를 위한 자연대류 열전달에 관한 연구
Appears in Collections:
Faculty of Applied Energy System > Energy and Chemical Engineering
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.