제주대학교 Repository

솔수염하늘소의 개체군 모형

Metadata Downloads
Alternative Title
A population model of Monochamus alternatus (Coleoptera: Cerambycidae)[: Temperature-dependent development, oviposition and phenology modeling]
Abstract
The Japanese pine sawyer, Monochamus alternatus Hope (Coleoptera: Cerambycidae), is a primary vector of PWD, Bursaphelenchus xylophilus Nickle, one of the most serious threats to pine trees in Asia and Europe. To establish a sound management strategy, it is necessary to construct a phenological prediction model for M. alternatus. Therefore, the population model of the Japanese pine sawyer was constructed to understand its population ecology and predict the seasonal occurrence pattern of the developmental stages through a series of studies: (1) temperature-dependent development of egg, larvae and pupae, (2) adult reproduction, (3) post-diapause larval development. The temperature-dependent development of each stage of M. alternatus was examined in the laboratory. The relationships between development rates of egg, larvae and pupa, and temperature showed a typical temperature-dependent form with high temperature inhibition. It was well described by a nonlinear development rate model. Egg, larva, and pupa developmental rate (1/median day) were, respectively, incorporated into temperature-dependant developmental rate models, using Lactin model. The probability distribution of development time of each stage was estimated by Weibull function based on physiological age of each stage implying the summation of their daily developmental rate. An oviposition model consists of an adult aging rate model, a total fecundity model, an age-specific cumulative oviposition model and an age-specific survival model, in which physiological age was calculated from adult aging rate model. Beta distribution model was applied to the total fecundity model. A normalized cumulative oviposition rate and a survival rate with physiological age were incorporated into those age-specific models. A population model for M. alternatus was established by integrating development model of each stage, oviposition model and post-diapause development model into a system. The number of individuals shifted from a stage to the next stage was calculated by multiplying the initial number if individuals in a stage by the probabilities produced by the development distribution model of each stage. For a validation, model outputs were compared with the actual proportion of diapausing larvae and adult occurrence surveyed in three different sites, Jeju in 2016, and were successfully fitted to actual proportion of diapausing larvae and adult occurrence. The adult activity of M. alternatus monitored with a pheromone trap showed a bimodal form consisted of the first peak in mid to late June and the second peak in mid to late September in Jeju area, Korea. The two peaks were separated apparently between mid and late August, showing a valley. The pine trees without oleoresin flow were abundant during early July to early August, and declined thereafter, which did not match with the valley of adult activity curve. Thus, the hypothesis of dying pine that attracts much strongly M. alternatus adults than pheromone lures do and makes a valley may not fully explain the bimodal pattern when the diapause ecology was not considered.
Author(s)
권순화
Issued Date
2017
Awarded Date
2017. 8
Type
Dissertation
URI
http://dcoll.jejunu.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000008301
Affiliation
제주대학교 일반대학원
Department
대학원 농학과
Advisor
김동순
Table Of Contents
List of Tables ⅰ
List of Figures ⅲ
ABSTRACT ⅵ
Ⅰ. 서 론 1
Ⅱ. 연구사 5
Ⅲ. 재료 및 방법 10
1. 솔수염하늘소의 발육단계별 온도의존적 발육 10
1-1. 실험곤충 사육 10
1-2. 발육단계별 온도의존적 발육 10
1-2-1. 알 온도발육 10
1-2-2. 유충 온도발육 11
1-2-3. 용 온도발육 11
1-3. 발육단계별 발육 모형 11
1-3-1. 선형발육모형 : 발육영점온도와 유효적산온도 추정 11
1-3-2. 비선형 온도발육모형 12
1-4. 자료 분석 14
2. 솔수염하늘소 성충의 온도의존적 산란 특성 19
2-1. 성충의 산란 19
2-2. 성충의 산란모형 19
2-2-1. 온도별 수명완료율 모형 19
2-2-2. 총 산란수 모형 20
2-2-3. 연령별 누적산란률 모형 20
2-2-4. 연령별 생존률 모형 21
2-2-5. 성충 산란모형의 종합 21
2-3. 자료 분석 22
3. 솔수염하늘소 휴면유충의 휴면발육과 휴면 후 발육 24
3-1. 휴면유충 채집 24
3-2. 휴면유충의 실내 저온처리 기간에 따른 휴면 후 발육 24
3-3. 휴면유충의 야외 채집시기에 따른 휴면 후 발육 24
3-4. 휴면후 유충 발육단계 전이모형과 휴면발육 모형 25
3-5. 자료 분석 27
4. 솔수염하늘소 개체군 모형 30
4-1. 개체군 모형의 구조 30
4-2. 개체군모형의 매개변수 31
4-3. 개체군 모형 시물레이션과 포장적합성 검정 31
4-3-1. 개체군 모형 시물레이션 31
4-3-2. 포장적합성 검정 32
4-4. 개체군 모형을 이용한 쌍봉형 성충발생의 이해 33
4-4-1. 봄우화 성충의 생존 잔류 개체군 가능성 33
4-4-2. 솔수염하늘소 비휴면 집단(cohort)의 성충우화가능성 34
Ⅳ. 결 과 및 고 찰 37
1. 솔수염하늘소의 발육단계별 온도의존적 발육 37
1-1 발육단계별 온도의존적 발육 37
1-1-1. 알의 온도의존적 발육 37
1-1-2. 유충의 온도의존적 발육 37
1-1-3. 용의 온도의존적 발육 39
1-2. 발육단계별 발육모형 39
1-2-1. 선형발육모형 : 발육영점온도와 유효적산온도 추정 40
1-2-2. 발육단계(알, 유충, 용)별 발육률 모형 41
1-2-3. 발육단계(알, 유충, 용)별 발육완료 분포 모형 42
2. 솔수염하늘소 성충의 온도의존적 산란 62
2-1. 솔수염하늘소 성충의 온도의존적 산란 62
2-2. 솔수염하늘소 성충의 산란모형 63
3. 솔수염하늘소 월동유충의 휴면발육과 휴면 후 발육 68
3-1. 휴면유충의 실내 저온처리 기간에 따른 휴면 후 발육 68
3-2. 휴면유충의 야외 채집시기에 따른 휴면 후 발육 68
3-3. 휴면유충 발육단계 전이모형 69
4. 솔수염하늘소 개체군 모형 74
4-1. 개체군 모형 시뮬레이션과 포장적합성 검정 74
4-1-1. 개체군 모형 시뮬레이션 74
4-1-2. 포장적합성 검정 74
4-2. 개체군 모형을 이용한 쌍봉형 성충발생의 이해 76
4-2-1. 봄우화 성충의 생존잔류 개체군 가능성 76
4-2-2. 솔수염하늘소 비휴면 집단(cohort)의 성충우화가능성 77
Ⅴ. 적 요 87
인용문헌 91
AppendixⅠ 101
Degree
Doctor
Publisher
제주대학교 일반대학원
Citation
권순화. (2017). 솔수염하늘소의 개체군 모형
Appears in Collections:
General Graduate School > Agricultural Science
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.