제주대학교 Repository

Development of Self-Powered Sensors using Hybrid Piezoelectric Structure Nanogenerators

Metadata Downloads
Abstract
자체 전원 장치 기술은 스마트 기술의 차기 혁명으로 복잡한 배터리 소스, 외부 회로 부품 및 에너지 생성을위한 자연스러운 소스의 사용을 폐지합니다. 일반적으로,보다 우수한 감지 기능은 다양한 자극을 측정 / 모니터하기위한 감지 유닛, 회로 구성 요소를 인터페이싱하는 것, 처리 유닛 및 배터리 소스와 같은 주요 단계를 통해 실현 될 수있다. 현대 사회의 가장 중요한 요소는 자연 자원을 절약하고 환경 친화적 인 운영을보다 쉽게하는 방식으로 물건을 만드는 것이고 핵심 포인트는 주변 환경에서 오는 대체 에너지 원으로 독성이있는 복잡한 배터리 소스를 제거하는 것입니다. 더욱이, 다기능 나노 물질을 이용한 재생 가능 대체 에너지 수확 (AEH) 접근법의 지속적인 진보 또는 발명은 매우 바람직하다. 우리의 일상 생활에서 전기 에너지는 최대 장치를 구동하는 주된 입력 소스이기 때문에 에너지 소비와 세계 에너지 위기는 인구 증가, 라이프 스타일 선택의 급속한 증가로 엄청나게 증가합니다. 전통적인 수확 접근법은 천연 자원의 더 큰 범위를 소모하여 인류와 우주에 잠재적 인 위협 인 지구 온난화, 오염 및 탄소 배출을 증진시킵니다. 많은 AEH 기술 중에서 압전 나노 발전기 (PNG) (또는 에너지 수확기)는 저주파 기계 진동과 같은 사회의 폐기물 기계 에너지 (WME)를 기계, 인체 운동, 해양으로 변환하는 매우 안정적이고 안정적이며 효율적인 접근법입니다 파도 및 바람/ 물 흐름 운동을 유용한 전기 에너지로 변환합니다.
지금까지 광범위한 제조 방법, 플라스틱 기판상의 다양한 1 차원 무기물 압전 나노 구조 (NSs)의 성장, 유연한 압전 폴리머 필름 및 장치 설계가 지속 가능한 독립적 인 전력을 창출하는 탁월한 에너지 활용 방법으로 PNG 기술을 향상시키는 것으로보고되었습니다 소스는 저전력 소비 전자 장치를 구동합니다. 또한 다양한 가혹한 환경에서의 기기 호환성, 전기 출력 성능 (nW/cm^2~μW/cm^2) 및 유연성 문제가 실시간 상용화 PNG 제품에 대해 생각하기에 최적화되었습니다. 다른 한편, 상업용 전자 장치를 구동 할 수있는 웨어러블 / 휴대용 독립 전원과 같은 이중 기능을 가진 PNG는 거의 없으며 다양한 물리적, 화학적, 생물학적 및 광학적 자극을 측정하는 자체 전원 센서로 작동 할 수도 있습니다. 여전히, 취성, 누설 전류 문제, 전기 출력 생성 및 장기 내구성과 같은 다양한 요인으로 고통받는 PNG 기술은 혁신적인 비용 효율적인 제조 방법을 사용하여 다기능 하이브리드 압전 구조를 개발함으로써 제어해야합니다.
3 장에서 화학적 산화법과 저온 수열 기술을 사용하여 유연한 인간의 머리카락 크기의 Ti 금속 선에 반도체 성 TiO2와 페 로브 스카이 트 압전체 BaTiO3 NSs의 반경 방향 성장을 설명한다. 또한, 와이어 형 나노 발전기와 자외선 센서 사이의 외부 병렬 연결에 의해 자체 구동 와이어 타입 자외선 센서의 개발에 사용되는 가공 와이어. 에너지 레벨 밴드 다이어그램에 의한 상세한 반경 방향 성장 과정과 UV 감지 작업 메커니즘이 탐구되었다. 4 장에서는 유연한 평면형 하이브리드 PNG를 사용하여 출구 파이프를 통해 흐르는 물의 속도를 측정하고 발광 다이오드를 구동하는 자체 구동 식 유체 속도 센서에 대해 설명합니다. 고결 정성 BTO 나노 큐브와 Ba(ZrTi)O_3 나노 큐브는 저비용 솔루션 캐스팅 기술로 평면 복합 필름 (PDMS/BTO, PVDF/Ba(ZrTi)O_3)의 대규모 생산을 위해 개발 및 활용되었습니다. 두 평면 PNG 장치의 전기적 응답은 수직의 기계적 힘에 대해 분석하고 특정 힘 조건에서 순간 전력 밀도 값을 평가합니다. 처음으로 ionotropic gelation 방법을 도입하여 제 5 장에서 기술 한 새로운 압전 구형 하이브리드 비드, 선형 웜 및 파형 생성 웜 구조를 제작하여 전기를 발생시켰다. 이들 구조의 형성 메카니즘, 용해도, 유연성 및 다양한 치수 크기가 공정 조건을 변경하여 얻어지고 분석되었다. 일정한 기계적 힘을받는 선형 및 물결 모양 웜 구조 기반 PNG의 길이 의존 압전 전위 반응을 조사했습니다. 물결 모양의 PNG 장치와 선형 웜 pH 센서 사이의 외부 병렬 연결을 통해 자체 구동 식 pH 센서를 입증했습니다. 나중에, BTO/Ca-alginate 구형 비드/PDMS 폴리머를 사용하여 개발 된 스트립 타입 하이브리드 나노 발전기 (H-NG)는 다양한주기 주파수 종속 기계력, 다양한 기계 압력 및 굴곡 각도에서 에너지 포집 능력을 평가했습니다. 스트립 장치는 개인/결합 된 손가락 굴곡/신전 운동을 모니터링하기 위해 비 침습적 자체 구동 굴곡 센서를 시연하는 데 사용되었습니다.
압전 PVDF 폴리머의 자 극 (self-poled)은 초음파 화학 공정을 사용하여 탐구되었고 폴리머 매트릭스에 활성탄 충진제가 포함되어 향상되었습니다 (6 장). 이 프로세스는 영구 전기 분극을 생성하기 위해 압전 재료의 추가 전기 폴링 프로세스를 완전히 제거합니다. 복합 막, 형성 메커니즘 및 평면 PNG 장치 응답의 전기 활성 -β 위상 백분율은 조심스럽게 평가됩니다. 이 유형의 PNG에는 리니어 모터 샤프트 하중 (자체 동력 가속도 센서)의 다양한 가속도를 감지 할뿐만 아니라 에너지를 사용하는 것과 같은 이중 기능이 있습니다. 처음으로 혁신적인 비용 효율적이고 환경 친화적 인 그루브 기술 (Chapter-7)이 고도의 적응성 / 유연성 반구형 복합 스트립 (HCS)을 준비하기 위해 개발되었습니다. 다양한 길이의 HCS, 비틀림 능력, 유연한 에너지 수확 장갑 및 순간 전력 밀도 생성이 신중하게 조사되었습니다. 고도의 생체 적합성 자체 구동 근육 모니터링 시스템은 여러 개의 HCS-PNG를 제작하고 인체 관절에 위치시킴으로써 구현되었습니다. Chapter-7은 단일 하이브리드 필름, 호 모양의 H-NG 및 나비 멀티 유닛 H-NG의 구성에서 압전 및 마찰 전기 기능을 결합하여 나노 발전기의 출력 밀도를 향상시키는 혁신적인 방법을 설명합니다. 여기서, PDMS 매트릭스, 적용된 힘 의존 분석, 다중 나노 발전기 모드 (압전, 마찰 전기 및 하이브리드) 응답, 스위칭 극성 테스트, 표면 형태 의존 출력, 접촉 - 이격 거리 효과 및 많은 디바이스 설계 파라미터에서 BaCaTiO_3-xBaSnTiO_3 나노 입자의 중량 비율 평가되었습니다. 처음으로, 하이브리드 필름의 유도면 밀도를 향상시킴으로써 H-NG에 대해 엄청난 양의 순시 전력 밀도가 달성되었습니다. 다양한 공기압 범위를 측정하기 위해 나비 식 멀티 유닛 H-NG를 사용하여 자체 구동 식 공기 압력 센서를 시연했습니다.
Self-powered device technology is the forthcoming revolution in smart technology and resulting abolish the usage of complex battery sources, external circuit components and natural sources for energy generation. Generally, the better sensing functionality can be realized by the following key steps such as sensing unit to measure/monitor various stimuli, interfacing circuit components, a processing unit and battery source to power up the whole unit. The modern society's foremost parameter is to make the things in an easier manner, saving natural resources, eco-friendly operation and the key point is to remove the toxic, complex battery sources by the alternative energy sources, which is coming from the surrounding environments. Moreover, the continuous progress or invention of renewable, alternative energy harvesting (AEH) approaches using the multifunctional nanomaterials was highly desirable. Because in our daily life the electrical energy is the primary input source to drive the maximum devices, energy consumption and world energy crisis increase tremendously due to rapid growth of population, lifestyle choices. Traditional harvesting approaches consume the greater extent of natural resources leads to enhance the global warming, pollution and carbon emissions, which is a potential threat to the human race and universe. Among many AEH technologies, piezoelectric nanogenerator (PNG) (or energy harvester) is highly reliable, stable and efficient approach to convert the waste mechanical energy (WME) in the society such as low frequency mechanical vibrations from the machines, human body motions, ocean waves and wind/water flow motions into useful electrical energy.
To date, extensive fabrication methods, growth of various one dimensional (1D)/two dimensional (2D) inorganic piezoelectric nanostructures (NSs) on plastic substrates, flexible piezoelectric polymer films and device designs (planar, stretchable, cylindrical or fiber) were developed to improve the PNG technology as a prominent energy harnessing approach for creating the sustainable independent power source to drive the low power consumed electronic devices/sensors. Moreover, the device compatibility, electrical output performance (nW/cm^2 to μW/cm^2) under various harsh environments and flexibility issues were optimized to think about the real-time commercialized PNG product. On the other side, few PNGs have dual functionality such as wearable/portable independent power source to drive the commercial electronic devices and can also work as a self-powered sensor (or battery-free sensor) to measure/monitor the various physical, chemical, biological and optical stimuli. Still, PNG technology suffering from various factors such as brittleness, leakage current issues, electrical output generation and long-term durability, which needs to be controlled by developing the multifunctional hybrid piezoelectric structures using innovative, cost-effective fabrication approaches.
In chapter-3 elucidate the radial growth of semiconducting TiO_2 and perovskite piezoelectric BaTiO_3 (BTO) NSs on the flexible human hair-sized Ti-metal wire using the chemical oxidation method followed by the low-temperature hydrothermal technique. Further, as-fabricated wires used for the development of self-powered wire type UV sensor by the external parallel connection between the wire type nanogenerator and UV-sensor. The detailed radial growth process and UV-sensing working mechanism by energy level band diagram were explored. Chapter-4 describes the self-powered fluid velocity sensor to measure the water velocity flowing through the outlet pipe and light emitting diodes (LEDs) using the flexible planar type hybrid PNG. High crystalline BTO nanocubes and Ba(ZrTi)O_3 nanocubes were developed and utilized to fabricate the large-scale production of planar composite films (PDMS/BTO, PVDF/ Ba(ZrTi)O_3) by the low-cost solution casting technique. Both the planar PNG devices electrical response analyzed upon the perpendicular mechanical force and evaluated the instantaneous power density values at particular force conditions. For the first time, ionotropic gelation method introduced to fabricate the novel piezoelectric spherical hybrid beads, linear worm and wavy-pattern worm structures for generating electricity described in Chapter-5. The formation mechanism of these structures, solubility, flexibility and various dimensional sizes were obtained and analyzed by changing the process conditions. The length-dependent piezoelectric potential response of the linear and wavy-pattern worm structure based PNGs under constant mechanical forces was investigated. Self-powered pH sensor was demonstrated by the external parallel connection between the wavy-pattern PNG device and the linear worm pH sensor. Later, strip type hybrid nanogenerator (H-NG) developed using the BTO/Ca-alginate spherical beads/PDMS polymer and evaluated the energy harvesting capability under different cyclic frequency dependent mechanical forces, various mechanical pressures, and bending angles. The strip device has been used to demonstrate the non-invasive self-powered flexion sensor to monitor the individual/combined finger flexion/extension movements.
Self-polarization of the piezoelectric PVDF polymer were explored using the sonochemical process and enhanced by the substitution of activated carbon fillers in a polymer matrix (Chapter-6). This process completely removes the additional electrical poling process of the piezoelectric materials to create the permanent electric polarization. The electroactive-β phase percentage of the composite film, formation mechanism and its planar PNG device response evaluated carefully. This type of PNG has dual functionality such as harnessing energy as well as sensing the various accelerations of the linear motor shaft load (self-powered acceleration sensor). For the first time, innovative, cost-effective, eco-friendly groove technique (Chapter-7) was developed to prepare the highly adaptable/flexible hemispherical composite strip (HCS). Multiple lengths of HCSs, twisting capability, flexible energy harvesting glove and instantaneous power density generation were investigated carefully. The highly biocompatible self-powered muscle monitoring system was implemented by fabricating the multiple HCS-PNGs and placing on the human body joints. Chapter-7 describes the innovative approach to improve the power density of the nanogenerator by the combining the piezoelectric and triboelectric functional properties in single hybrid film, arc-shaped H-NG and the construction of butterfly multi-unit H-NGs. Here, weight ratio of BaCaTiO_3-xBaSnTiO_3 nanoparticles in PDMS matrix, applied force dependent analysis, multiple nanogenerator mode (piezoelectric, triboelectric and hybrid) responses, switching polarity test, surface morphology dependent output, contact-separation distance effects, and many device design parameters were evaluated. For the first time, an enormous amount of instantaneous power density was achieved for H-NG by improving the induced surface density of the hybrid film. Self-powered air pressure sensor was demonstrated using the butterfly multi-unit HNG to measure the various air-pressure ranges.
Author(s)
올루리나가말레스와라라오
Issued Date
2018
Awarded Date
2018. 2
Type
Dissertation
URI
http://dcoll.jejunu.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000008487
Alternative Author(s)
Alluri, Nagamalleswara Rao
Affiliation
제주대학교 대학원
Department
대학원 에너지응용시스템학부 Mechanical Engineering
Advisor
김상재, 정지현
Table Of Contents
Contents i
Nomenclature ix
List of Tables xii
List of Figures xiii
Abstract-Hungul xxxvi
Abstract-English xl
CHAPTER-I
Introduction
1.1 Energy crisis and Effect of traditional energy harvesting technologies 1
1.2 Waste mechanical energy sources and utilization approaches 2
1.3 Piezoelectric/triboelectric nanogenerators and working principles 4
1.3.1 Piezoelectric nanogenerator 4
1.3.2 Triboelectric nanogenerator 7
1.4 Types of piezoelectric materials 8
1.4.1 Natural piezoelectric crystals 9
1.4.2 Man-made piezoelectrics 10
1.4.2.1 Crystals 10
1.4.2.2 Inorganic perovskite ceramics 10
1.4.2.3 Piezoelectric polymers 12
1.4.2.4 Piezoelectric composites 12
1.5 Necessity to develop the Self-powered sensors/systems 13
1.6 Objectives and scope of thesis 14
1.7 Structure of thesis 16
1.8 References 19
CHAPTER-II
Synthesis, fabrication methods for the piezoelectric nanoparticles, composite films and characterization techniques
2.1 Reagents and apparatus 21
2.2 Synthesis of perovskite piezoelectric nanomaterials 24
2.2.1 Solid state reaction synthesis 24
2.2.2 Molten salt synthesis 25
2.2.3 Hydrothermal synthesis 25
2.3 Fabrication methods for hybrid (or composite) solutions and films 26
2.3.1 Ultrasonication method 26
2.3.2 Polymer solution casting method 27
2.3.3 Ionotropic gelation method 27
2.3.4 Groove technique 29
2.4 Materials characterization 29
2.4.1 X-ray diffraction technique 30
2.4.2 Raman spectroscopy 30
2.4.3 Fourier transform infrared spectroscopy 31
2.4.4 Field-emission scanning electron microscopy 32
2.4.5 Energy dispersive X-ray spectroscopy 32
2.4.6 X-ray photoelectron spectroscopy 33
2.4.7 Ferroelectric hysteresis (P-E) loop 33
2.5 Fabrication and measurement unit of nanogenerator 34
2.5.1 Fabrication of piezoelectric nanogenerators 34
2.5.2 Nanogenerator testing and characterization 35
2.6 Modes of self-powered sensor/systems 36
2.6.1 External and internal modes 36
2.7 References 38
CHAPTER-III
Self-powered wire type UV sensor using piezoelectric BaTiO_3 and semiconducting TiO_2 nanostructures on Ti-metal wire
3.1 Introduction 40
3.2 Experimental methods 43
3.2.1 Radial growth of TiO_2 and BTO nanostructures on flexible Ti-wire 43
3.2.2 Fabrication of TiO_2/Ti wire UV-sensor (TW-UV sensor) & Flexible wire BTO piezoelectric nanogenerator (FW-PNG) 45
3.3 Results and Discussion 46
3.3.1 Structural and surface morphology of radially grown TiO_2 NSs 46
3.3.2 Photo-response of TiO_2/Ti wire (TW) based UV-sensor 52
3.3.3 Growth mechanism, structural & surface morphology of BTO NSs 58
3.3.4 Self-powered wire type UV-sensor 65
3.4 Conclusions 68
3.5 References 70
CHAPTER-IV
Self-powered fluid velocity sensor-LEDs by polymer/Ba(Ti,Zr)O_3 nanocubes hybrid film piezoelectric nanogenerator
4.1 Self-powered fluid velocity sensor based on polyvinylidene/BaTi_(_1_-_x_)Zr_xO_3 nanocubes hybrid film piezoelectric nanogenerator
4.1.1 Introduction 75
4.1.2 Experimental methods 77
4.1.2.1 Synthesis of B(Ti_(_1_-_x)Zr_x)O_3 nanocubes 77
4.1.2.2 Hybrid film and fabrication of nanogenerator 78
4.1.3 Results and discussions 79
4.1.3.1 Structural & morphology of BTZO nanocubes/PVDF film 79
4.1.3.2 Energy harvesting analysis of piezoelectric nanogenerator 85
4.1.3.3 Self-powered Fluid Velocity sensor 96
4.1.4 Conclusions 100
4.1.5 References 102
4.2 Self-powered light emitting diodes using biomechanical-driven output of PDMS/BaTiO_3 nanocubes hybrid film nanogenerator
4.2.1 Introduction 106
4.2.2 Experimental section 109
4.2.2.1 Synthesis of BaTiO_3 nanocubes 109
4.2.2.2 Fabrication of piezoelectric BTO NCs/PDMS composite film 110
4.2.2.3 Fabrication of BTP-CF based PNG devices 111
4.2.3 Results and discussions 112
4.2.3.1 Structural and surface morphology of BTP-CFs 112
4.2.3.2 Piezoelectric potential response of CPNG and Self-powered light emitting diodes 116
4.2.4 Conclusions 122
4.2.5 References 124
CHAPTER-V
Self-powered flexion Sensor/electronic display/pH sensor using BaTiO_3/bio-polymer hybrid structure nanogenerators
5.1 Self-powered flexion sensor by BaTiO_3 nanoparticles/Ca-alginate hybrid beads/PDMS film based piezoelectric-triboelectric hybrid nanogenerator
5.1.1 Introduction 127
5.1.2 Experimental Methods 132
5.1.2.1 Synthesis of BTO NPs 132
5.1.2.2 Fabrication of spherical Ca-alginate, composite beads 132
5.1.2.3 Fabrication of pure and composite bead based nanogenerators 134
5.1.3 Results and Discussion 135
5.1.3.1 Composites beads, surface morphological and structural analysis 135
5.1.3.1.1 Structural analysis (XRD, Raman and FT-IR) of BTO NPs 136
5.1.3.1.2 Structural analysis (XRD, Raman and FT-IR) of beads 139
5.1.3.1.3 Energy harvesting performance of CBNG device 143
5.1.3.1.4 Biomechanical hand force effect on CBNG device output 146
5.1.3.1.5 Constant Load effect and power density calculations of CBNG 148
5.1.3.1.6 Working mechanism of CBNG device 152
5.1.3.1.7 Various mechanical pressure effect on S-CBNG device output 153
5.1.3.1.8 Bending effect on S-CBNG device output 157
5.1.3.1.9 Self-powered wearable flexion (SWF) sensor 160
5.1.4 Conclusions 165
5.1.5 References 167
5.2 Self-powered electronic display using the BTO NSs/Ca-alginate hybrid linear worm structure & energy harvesting
5.2.1 Introduction 172
5.2.2 Experimental Method 178
5.2.2.1 Fabrication of BTO NPs/Ca-alginate linear worms 178
5.2.2.2 Fabrication of flexible, laterally aligned linear worm based piezoelectric nanogenerators 180
5.2.3 Results and discussion 180
5.2.3.1 Structural and solubility conditions of composite structures 180
5.2.3.2 Energy harvesting performance of worm structure piezoelectric nanogenerator 184
5.2.3.3 Length dependent output of WPNGs and self-powered electronic display 188
5.2.4 Conclusions 194
5.2.5 References 196
5.3 Self-powered pH sensor using the wave-pattern hybrid worm structure based PNG and linear worm structure pH sensor
5.3.1 Introduction 200
5.3.2 Experimental method 202
5.3.2.1 Synthesis of BaTiO_3 nanoparticles 202
5.3.2.2 Fabrication of nonlinear, handy CWPW and CLW structures 203
5.3.2.3 Fabrication of flexible, laterally aligned CWPW piezoelectric nanogenerators 204
5.3.2.4 Fabrication of CLW pH sensor 205
5.3.3 Results and discussion 206
5.3.3.1 Structural and surface morphology 206
5.3.3.2 Energy harvesting and working mechanism 208
5.3.3.3 Self-powered CLW pH Sensor 217
5.3.4 Conclusions 220
5.3.5 References 221
CHAPTER-VI
Self-powered acceleration sensor using enhanced electroactive β-phase of PVDF/activated carbon hybrid film nanogenerator
6.1 Introduction 226
6.2 Experimental method 230
6.2.1 Synthesis of PVDF/activated carbon hybrid film by ultrasonication followed by solution casting technique230
6.2.2 Synthesis of PVDF film using magnetic stirring process 231
6.2.3 Fabrication of flexible composite nanogenerator (C-NG) 232
6.3 Results and Discussion 232
6.3.1 Structural and dielectric constant analysis of flexible composite films 232
6.3.2 Surface morphology of the composite films 239
6.3.3 Piezoelectric potential response of P-NG 240
6.3.4 Self-powered acceleration sensor using flexible C-NG device 247
6.1.4 Conclusions 256
6.1.5 References 258
CHAPTER-VII
Self-powered muscle monitoring system/air-pressure sensor based on PDMS/(BaCa)(SnTi)O_3 hybrid film nanogenerators
7.1 Groove technique derived adaptable piezoelectric hemispherical composite strips for self-powered muscle monitoring system
7.1.1 Introduction 262
7.1.2 Experimental Method 264
7.1.2.1 Synthesis of (BaCa)(SnTi)O_3 nanoparticles 264
7.1.2.2 Fabrication of hemispherical composite strips 264
7.1.2.3 Fabrication of adaptable hemispherical composite strips PNG 265
7.1.3 Results and Discussion 267
7.1.3.1 Structural and ferroelectric hysteresis loop analysis 267
7.1.3.2 Ferroelectric hysteresis loop and elemental composition analysis 270
7.1.3.3 Electrical response of hemispherical composite strips PNG 270
7.1.3.4 Self-powered muscle monitoring system by multiple HS-CSPNGs 276
7.1.4 Conclusions 278
7.1.5 References 280
7.2 Self-powered air pressure sensor using high output butterfly wingstructure type multiunit-hybrid nanogenerator
7.2.1 Introduction 281
7.2.2 Experimental Method 284
7.2.2.1 Synthesis of BCT, BST, and 0.3BCT-0.7BST piezoelectric NPs 284
7.2.2.2 Fabrication of various hybrid film surface morphologies 285
7.2.2.3 Fabrication of P-NG, T-NG and H-NG modes 287
7.2.3 Results and Discussion 288
7.2.3.1 Structural and surface morphological analyses 288
7.2.3.2 Harvesting energy using P-NG, T-NG, and H-NG modes 292
7.2.3.3 Theoretical calculation of the ε_e_f_f and d_3_3 parameters 294
7.2.3.4 Effect of surface modification on the composite film H-NG 304
7.2.3.5 Reproducibility test 306
7.2.3.6 Effect of the contact–separation distance, charge of the H-NG 307
7.2.3.7 Butterfly wing structure-type multi-unit H-NGs 313
7.2.3.8 Self-powered air pressure sensor using BWS multi-unit H-NG 318
7.2.4 Conclusions 320
7.2.5 References 321
CHAPTER-VIII
Summary and future work
8.1 Summary 324
8.2 Suggestions for the future work 329
Appendix A: List of Publications 331
Appendix B: List of Cover pages 335
Appendix C: List of Patents 337
Appendix D: List of Conferences 338
Degree
Doctor
Publisher
제주대학교 일반대학원
Citation
올루리나가말레스와라라오. (2018). Development of Self-Powered Sensors using Hybrid Piezoelectric Structure Nanogenerators
Appears in Collections:
Faculty of Applied Energy System > Mechanical Enginering
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.