제주대학교 Repository

Development of Advanced Nanostructured Electrode Materials for High-Performance Supercapacitors and Self-Charging Power Cell

Metadata Downloads
Abstract
신산업의 급속한 발전과 더불어 재생 가능한 에너지의 필요성은 다양한 분야 (주거, 산업, 방위 보안 및 연구부문 등)에서 일상 생활에서의 사용을 위한 대체 에너지 변환/저장 시스템의 개발을 위한 연구가 활발히 진행되고 있다. 특히, 다양한 유형의 에너지 저장 장치 중에서도 전기화학적 커패시터 (슈퍼커패시터)는 높은 고유전력 밀도, 보통수준의 고유에너지 밀도, 빠른 충전-방전 속도, 환경 안전성 등의 다양한 장점을 가지고 있어, 많은 관심을 끌고 있다. 슈퍼커패시터의 주요 단점은 기존의 배터리 기술에 비해 보통수준의 고유 에너지를 가지고 있지만, 다른 우수한 초고속 충전-방전 특성 등은 슈퍼커패시터를 고전력 전자장치, 하이브리드-전기차량 등과 같은 잠재적인 응용 분야를 가지고 있으며, 슈퍼커패시터의 성능 지표를 높이기 위해 많은 연구 그룹에 의해 수행되고 있다. 일반적으로, 슈퍼커패시터의 성능지표는 주로 전극재료, 분리막 및 전해액 시스템에 의존한다. 전극재료의 경우, 고려해야 될 주요 측면은 우수한 전기전도성, 특정 고유표면적과 우수한 전기화학적 특성을 갖는 나노 구조 형태이다. 전극물질의 다양한 유형의 유효성 가운데, 표면적이 큰 새로운 나노 구조의 전 재료는 전기화학적 특성을 높일 수 있으며, 이러한 나노 재료들은 슈퍼커패시터 전극의 잠재적인 후보가 될 수 있다. 또한, (i) 하이브리드-이온 커패시터/비대칭성 수퍼커패시터 (동작 전압 창 (operating voltage window, OPW)을 2.0 V까지 증가시키기 위해) 와 (ii) 이온/유기성 전해액(OPW를 3.5 V까지 증가시키기 위해)의 제작은 슈퍼커패시터의 고유 에너지 지표를 높이기 위해 사용된다.
슈퍼커패시터의 또 다른 흥미로운 응용은 자가충전 슈퍼커패시터 전력 소자(self-charging supercapacitor power cell, SCSPC)라고 부를 수 있는 일체형 에너지 변환 및 저장 시스템의 개발이 가능한 압전기 개념과 통합하는 능력이다. SCSPC 장치는 에너지원으로써 사람의 생체역학적 에너지를 이용하여 착용 가능한 전자 장치들을 구동하거나 동력을 공급하는 것이 가능한 중요한 일체형 자가구동 시스템이다. SCSPC 시스템은 (i)에너지 수확기, 그리고 (ii) 에너지 저장 장치를 하나의 장치에 통합한다. SCSPC 장치의 에너지 변환효율은 현재 단계에서는 매우 낮으므로, SCSPC의 성능 개선이 필요하다. 본 논문에서는 소자의 성능지표 향상을 위한 나노가공 전극 재료와 피에조-폴리머 분리기로 상업적 폴리머 분리기를 대체한 자가 충전 전력장치의 개발에 중점을 둔 연구를 수행하였다. 수용성 전해액 시스템을 사용한 성능 지표 개선을 위하여 제작한 하이브리드-이온 수퍼커패시터(HSCs)/비대칭 수퍼커패시터(ASC)는 배터리 형태의 유도전류성 나노구조 전극재료(LiMn2O4, CuHCF, MnHCF & Cu2WS4/Ni) 및 용량형 전극 재료 (그래핀 및 흑연 카본)을 이용하여 제작하였다. LiMn2O4║그래핀, CuHCF║GC 및 MnHCF║그래핀 같은 제작된 장치는 각각 약 39, 42 및 44 Wh/kg의 고유 에너지를 특성을 보였으며, 상응하는 고유 전력은 각각 440, 523, 588 W kg-1이다. 마찬가지로, CWS/Ni║그래핀 ASC 장치 또한 전기화학적 공정 중에 전자-이온을 빠르게 운송하는 Ni폼과 전극 물질의 직접결합에 의한 고에너지 (48Wh/kg) 및 전력 (321W/kg) 특성을 보였다.
성능지표를 개선을 위한 또 다른 체계적인 방법으로써, 이온/유기 전해액을 사용한 우수한 전기화학적 활성영역을 제공할 수 있는 층/시트 같은 구조로 만들어진 전극재료의 개발을 시도하였으며, 층간소재의 준비는 열수반응 (파란 TiO2, MoSe2, ReS2), 지리화학적 반응 (2D 실리콘 시트), 그리고 기계가공 박리 공정 (MoS2)와 같은 다양한 제작방법을 사용하였다. 금속산화물(블루TiO2), 2차원 전이금속 칼코게나이드 (MoS2, ReS2, MoSe2), 층간 실록신 및 그 파생물 (실록신, 열처리된 실록신, 실리콘옥시카바이드막)과 같은 서로 다른 층간소재는 유기 전해액 (TEABF4)을 사용하는 대칭성 슈퍼커패시터 (SSCs)를 위해 새로운 전극 재료를 사용하였다. 면적 성능지표는 실리콘 물질 및 SSCs기반의 TiO2 물질을 이용해 널리 사용되는 반면 중력 성능 지표는 SSCs기반의 TMC 물질을 이용하였다. SSCs기반의 TiO2 및 2D 실리콘의 면적 지표에서 고유 에너지 및 고유 전력의 상대적인 비교 값은 i) 고유 에너지 TiO2 (3.22 μWh cm-2) < 실록신 (2.52 μWh cm-2) > HT-실록신 (4.31 μWh cm-2) 및 ii) 고유 전력 TiO2 (8.06 mW cm-2) > 실록신 (9.75 mW cm-2) > HT-실록신 (9.75 mW cm-2) 순이었다. 실리콘 옥시카바이드 (SiCxOy) SSC 장치의 전기화학적특성은 최대 고유전력 (15 kW/kg)과 함께 고유 에너지(~20.8 Wh/kg)를 보였다. 이 SSCs의 성능지표 분석은 높은 고유 에너지는 MoS2 (18.43 Wh/kg) > MoSe2 (20.31 Wh/kg) > ReS2 (28.55 Wh/kg)순이고 고유 전력은 MoS2 (7.5 kW/kg) > MoSe2 (7.5 kW/kg) > ReS2 (10 kW/kg) 순임을 보여 주었다. 이 결과들을 바탕으로, MoSe2 전극 및 슈퍼커패시터는 높은 고유 에너지(20.31 Wh/kg)와 전력 밀도(7.5 kW/kg)와 함께 높은 OPW(3.0V)라는 이점을 갖고 있다. 또한, 큰 음이온 분극률의 이점 (그리고 높은 이온화 열확산성)을 가진 MoSe2시트의 전기 전도도는 MoS2 및 ReS2시트보다 높으며 MoS2 및 ReS2의 S2-와 비교하여 Se2-에서 발생 하였다. 따라서, MoSe2 SSC는 최초로 이온젤화 전해질 및 전기방사된 PVDF 섬유를 사용하는 자가충전 수퍼커패시터소자 (SCSPC)의 제작 및 성능 평가를 위한 추가 연구에 사용하였다. SCSPC 장치는 MoSe2 전극(에너지 저장 전극), 전기방사된 나노섬유 PVDF/NaNbO3 매트(다공성 피에조-폴리머 분리기), 그리고 PVDF-co-HFP/TEABF4 (이온젤화 전해질)를 사용하여 제작하였다. SCSPC의 개별 전기화학적 성능은 2.0V이상의OPW에서 작동하는 능력을 보였고 이것은 높은 고유 에너지 (37900 μJcm-2) 및 고유전력(2685 μWcm-2)특성을 보여 주었다. 전기방사된 나노섬유 PVDF/NaNbO3 매트의 개별 전기화학적 성능은 기계적 힘 (30N)이 가해졌을 때 높은 전압 (~12V)을 보여 주었다. MoSe2 SCSPC의 자가충전성능은 넓은 범위의 힘 (압력)에서 SCSPC에 저장된 전하를 모니터링 하였다. SCSPC는 최대 30N의 힘을 받을 때 705mV까지 충전되었으며, MoSe2 SCSPC의 달성된 성능 지표는 기존 SCSPCs의 성능과 비교하여 5배 이상 높은 소자의 제작에 성공 하였으며, MoSe2 SCSPC 장치를 이용하여 기계적 에너지를 유용한 에너지로 변환할 수 있는 유연/휴대가능/착용 가능한 차세대 자체충전전력원의 개발을 위한 기반연구성과를 제공하였다.
In the advent of the modern era, the need for global renewable energy is on great demand owing to the depletion of renewable energy resources which initiates the development of alternative energy conversion/storage systems for day-to-day life usage in various sectors (including residential sector, industrial sector, defence security and institutional research sectors). Amongst various types of energy-storage devices, electrochemical capacitors/supercapacitors have gained much more interest due to its high- specific power density, moderate specific energy density, fast charge-discharge rate, extended cycle with environmental safety. The main drawback in a supercapacitor is their moderate specific energy compared to the existing battery technology. Even though supercapacitors lack in terms of specific energy, the other fascinating properties of supercapacitors (ultrafast charge-discharge properties) makes them as an ideal choice for the potential application in high power electronics, hybrid-electric vehicles and so on. The progressive research has been carried by many research groups to enhance the performance metrics of electrochemical capacitors. Usually, the performance metrics of supercapacitors mainly depend upon electrode materials and electrolyte system. In the case of electrode materials, the main aspects need to be taken into consideration are good electrical conductivity, nanostructures morphology with the high specific surface area and superior electrochemical properties. Amidst the availability of various types of electrode materials, novel nanostructured electrode materials with the high surface area can lead to enhanced electrochemical properties, and these nanomaterials become a potential candidature for the supercapacitor electrodes. The fabrication of (i) hybrid-ion capacitor/asymmetric supercapacitor (to increase the operating voltage window (OPW) up to 2.0 V) and (ii) the use of ionic/organic electrolytes ((to increase the OPW up to 3.5 V), are used to boost the specific energy metrics of supercapacitors.
Another interesting application of supercapacitor is their ability to integrate with the concept of piezoelectric to develop all-in-one energy conversion and storage system which can be termed as self-charging supercapacitor power cell (SCSPC). The SCSPC devices are of great interest for driving or powering wearable electronics via utilizing the biomechanical energy from human as an energy source. The SCSPC system integrates two compartments viz, (i) energy harvester, and (ii) energy storage compartments together in a single device. The energy-conversion-efficiency of SCSPC devices are very low at this stage, which needs to be improved via engineering each compartment of SCSPC. Therefore, the development of highly-efficient SCSPC device attract much attention considering the depletion of renewable energy sources. Considering all the aspects regarding the energy storage device, this thesis is mainly focused on the engineering nano-structured electrode materials for improving the performance metrics and their application towards self-charging power cell devices via replacing the commercial polymeric separator by piezo-polymer separator. In the view of improving performance metrics using aqueous electrolyte system, the hybrid-ion supercapacitors (HSCs) / asymmetric supercapacitor (ASC) are fabricated using battery-type faradaic nanostructured electrode materials (LiMn2O4, CuHCF, MnHCF & Cu2WS4/Ni) and capacitive type electrode materials (graphene and graphitic carbon). The fabricated device such as LiMn2O4║graphene, CuHCF║GC and MnHCF║graphene delivers specific energy of about 39, 42, and 44 Wh/kg with the corresponding specific power of 440, 523, and 588 W kg-1 respectively. Likewise, the CWS/Ni║graphene ASC device also possesses high energy (48 Wh/kg) and power (321 W/kg), due to the direct integration of the electrode material on to the Ni foam which makes the electron-ion transport fast during the electrochemical process. Another systematic way to improve the performance metric is to develop electrode materials made of layered/sheet-like structures which can provide superior electrochemical active sites with the use of the ionic/organic electrolyte. In this aspect, the preparation of layered materials involved various methodologies such as hydrothermal preparation (blue TiO2, MoSe2, ReS2), topochemical de-intercalation reaction (2D silicon sheets), and mechanomilling assisted exfoliation process (MoS2). Different layered materials such as metal oxide (blue TiO2), two-dimensional transition metal chalcogenides (MoS2, ReS2, MoSe2), layered siloxene and their derivatives (siloxene, heat-treated siloxene, silicon oxy carbide lamellas) were examined as novel electrode materials for symmetric supercapacitors (SSCs) using organic electrolyte (TEABF4). Areal performance metrics are widely used for silicon- and TiO2- based SSCs whereas gravimetric performance metrics are used for TMC- based SSCs. The specific energy and specific power in areal metrics of TiO2 and 2D silicon based SSCs were in the order of TiO2 (3.22 μWh cm-2) < siloxene (2.52 μWh cm-2) > HT-siloxene (4.31 μWh cm-2) for specific energy and TiO2 (8.06 mW cm-2) > siloxene (9.75 mW cm-2) > HT-siloxene (9.75 mW cm-2) for specific power. The electrochemical analysis of silicon oxy carbide SSC device possesses specific energy (~20.8 Wh/kg) with a maximum specific power (15 kW/kg). The analysis of performance metrics of these SSCs demonstrated that the high specific energy is in the order of MoS2 (18.43 Wh/kg) > MoSe2 (20.31 Wh/kg) > ReS2 (28.55 Wh/kg) and the specific power is in the order of MoS2 (7.5 kW/kg) > MoSe2 (7.5 kW/kg) > ReS2(10 kW/kg). Based on these findings, MoSe2 electrodes and supercapacitors possess the advantage of high OPW (3.0V) with high specific energy (20.31 Wh/kg) and power density (7.5 kW/kg). Further, electrical conductivity of MoSe2 sheets is higher than MoS2, and ReS2 sheets with the advantage of large anionic polarizability (and high ionic diffusivity) arise from the Se2- as compared to that of S2- in MoS2 and ReS2. Thus, MoSe2 SSC is used for further studies for the fabrication and performance evaluation of self-charging supercapacitor cell (SCSPC) device using ionogel electrolyte and electrospun PVDF fibres for the first time. The SCSPC device was fabricated using MoSe2 electrodes (as energy storage electrode), electrospun nanofibrous PVDF/NaNbO3 mats (porous piezo-polymer separator), and PVDF-co-HFP/TEABF4 (ionogel electrolyte). The individual electrochemical performance of SCSPC showed their ability to work over an OPW of 2.0 V and delivered high specific energy (37900 μJ cm-2) and specific power (2685 μW cm-2). The individual electromechanical performance of electrospun nanofibrous PVDF/NaNbO3 mats showed a high voltage (~12 V) when subjected to a mechanical force (30 N). The self-charging properties of the MoSe2 SCSPC was examined via monitoring the charge stored in the SCSPC under various range of applied force (compressive). The SCSPC was charged up to 705 mV subjected to a maximum force of 30 N. The achieved performance metrics of MoSe2 SCSPC is five- fold higher compared to state of art of SCSPCs. The key experimental findings ensure the conversion of mechanical energy into useful energy using the MoSe2 SCSPC device, thus highlighting their impact towards the development of future-generation self-powered devices for flexible/portable/wearable electronics.
Author(s)
Parthiban Pazhamalai
Issued Date
2019
Awarded Date
2019. 2
Type
Dissertation
URI
http://dcoll.jejunu.ac.kr/common/orgView/000000008939
Affiliation
제주대학교 대학원
Department
대학원 메카트로닉스공학과
Advisor
김상재
Table Of Contents
Contents i
Nomenclature xi
List of Tables xiii
List of Figures xiv
Abstract – Hangul xxxiv
Abstract xxxviii
CHAPTER -1
INTRODUCTION
1.1. Background 1
1.2. Importance of electrochemical energy storage devices 1
1.3 CLASSIFICATION OF SUPERCAPACITORS 3
1.3.1 ELECTROCHEMICAL DOUBLE- LAYER CAPACITORS (EDLC) 3
1.3.2 PSEUDOCAPACITORS 5
1.3.3 HYBRID CAPACITORS 7
1.3.4 Electrode materials 8
1.3.4.1 Carbon based electrode materials 8
1.3.4.2 CONDUCTING POLYMERS (CPs) 10
1.3.4.3 METAL OXIDES 10
1.3.4.4 Transition metal chalcogenides 11
1.4 Energy harvesting: Nanogenerator 11
1.4.1 Mechanism of piezoelectric nanogenerator 12
1.4.2 Piezo-materials 13
1.5 Objectives and scope of thesis 13
1.6 Structure of this thesis 15
1.7 References 17
CHAPTER -2 MATERIALS, METHODS OF PREPARATION, CHARACTERIZATION AND FABRICATION TECHNIQUES
2.1 Materials and Apparatus 29
2.2 Material preparation 32
2.2.1 Sol-gel combustion method 32
2.2.2 Sonochemical method 33
2.2.3 Hydrothermal method 33
2.2.4 Electrospinning method 33
2.2.5 Topochemical extraction method 34
2.2.6 Mechanical exfoliation method 35
2.2.7 Graphene oxide synthesis by modified Hummer's method 35
2.3. Materials characterization 36
2.3.1. X-ray diffraction (XRD) 36
2.3.2. Laser Raman spectroscopy 36
2.3.3. Fourier transform infrared (FT-IR) spectrometer 36
2.3.4. Field-emission scanning electron microscopy 36
2.3.5. High-resolution transmission electron microscopy 37
2.3.6. Energy dispersive X-ray spectroscopy analysis (EDS) 37
2.3.7. X-ray photoelectron spectroscopy (XPS) 37
2.3.8. Brunauer, Emmett and Teller (BET) surface area analysis 38
2.3.9 UV-Vis spectrophotometer (UV-Vis) 38
2.3.10 Photoluminescence 38
2.3.11 Electron spin resonance (ESR) 38
2.4 Fabrication of electrode 38
2.5 Device fabrication 39
2.5.1 Asymmetric/hybrid ion supercapacitor 39
2.5.2 Coin-cell symmetric supercapacitor 39
2.6 Electrochemical characterization 40
2.6.1 Cyclic voltammetry (CV) 40
2.6.2 Galvanostatic charge/discharge (GCD) 40
2.6.3 Electrochemical impedance spectroscopy (EIS) 41
2.6.4. Calculation of electrochemical parameters 41
2.6.4.1 Determination of specific capacitance from CV analysis 41
2.6.4.2 Determination of specific capacitance from CD analysis 42
2.6.4.3 Determination of Columbic efficiency, Energy & power density42
2.6.4.4 Determination of specific capacitance from EIS analysis 42
2.6.4.5 Determination of real and imaginary components from EIS 43
2.6.4.6 Analysis of asymmetric supercapacitor device 43
2.7 References 44
CHAPTER – 3 AQUEOUS HYBRID-ION/ASYMMETRIC SUPERCAPACITOR USING BATTERY TYPE FARADAIC ELECTRODES (LiMn2O4, Cu-HCF, Mn-HCF and COPPER TUNGSTEN SULFIDE) AND CAPACITIVE TYPE ELECTRODES (GRAPHENE AND GRAPHITIC CARBON)
3.1 Fabrication of High-Performance Aqueous Li-Ion Hybrid Capacitor with LiMn2O4 and Graphene
3.1.1 Introduction 48
3.1.2 Experimental section 50
3.1.2.1 Preparation of lithium manganese oxide 50
3.1.2.2 Preparation of graphene nanosheets 50
3.1.2.3 Preparation of the working electrodes and electrochemical analysis 50
3.1.3 Results and discussion 51
3.1.3.1 Physicochemical characterization 51
3.1.3.2 Electrochemical characterization 55
3.1.4 Conclusions 64
3.1.5 References 65
3.2 High-energy aqueous Li-ion hybrid capacitor based on metal-organic-framework-mimicking insertion-type copper hexacyanoferrate and capacitive-type graphitic carbon electrodes
3.2.1 Introduction 73
3.2.2 Experimental section 75
3.2.2.1 Preparation of copper hexacyanoferrate (Cu-HCF) nanoparticles 75
3.2.2.2 Preparation of graphitic carbon (GC) nanoparticles 76
3.2.2.3 Preparation of the working electrodes and electrochemical analysis 76
3.2.3. Results and discussion 77
3.2.3.1 Physicochemical characterization 77
3.2.3.2 Electrochemical characterization 83
3.2.4 Conclusions 92
3.2.5 References 93
3.3 Fabrication of high energy Li-ion hybrid capacitor using manganese hexacyanoferrate nanocubes and graphene electrodes
3.3.1. Introduction 103
3.3.2. Experimental section 105
3.3.2.1 Preparation of Mn-HCF nanocubes 105
3.3.2.2 Preparation of graphene oxide and graphene nanosheets 105
3.3.2.3 Fabrication of electrodes and electrochemical analysis 106
3.3.3 Results and discussion 107
3.3.3.1 Physicochemical characterization 107
3.3.3.2 Electrochemical characterization 111
3.3.4 Conclusion 120
3.3.5 References 121
3.4 Copper tungsten sulfide anchored on Ni-foam as a high-performance binder free negative electrode for asymmetric supercapacitor
3.4.1 Introduction 131
3.4.2 Experimental section 133
3.4.2.1 Hydrothermal growth of copper tungsten sulfide on Ni foam 133
3.4.2.2 Preparation of graphene nanosheets 134
3.4.2.3 Electrochemical measurement using three-electrode configuration 134
3.4.2.4 Fabrication & electrochemical analysis of asymmetric supercapacitor 135
3.4.3 Results and discussion 136
3.4.3.1 Physicochemical characterization 136
3.4.3.2 Electrochemical characterization 142
3.4.4. Conclusions 155
3.4.5 References 157
CHAPTER – 4 SYNTHESIS OF LAYERED TRANSITION METAL COMPOUNDS (TiO2, SILOXENE, AND HT-SILOXENE) AND FABRICATION OF SYMMETRIC CAPACITOR USING ORGANIC/IONIC LIQUID ELECTROLYTE Chapter 4.1 Blue TiO2 nanosheets as a high-performance electrode material for supercapacitors
4.1.1 Introduction 175
4.1.2. Experimental section 176
4.1.2.1 Preparation of titanium oxide (TiO2) nanosheets 176
4.1.2.2 Electrochemical methods 176
4.1.3. Results and discussion 177
4.1.3.1 Physicochemical characterization 177
4.1.3.2 Electrochemical characterization 183
4.1.4 Conclusion 192
4.1.5 References 193 Chapter
4.2 Understanding the thermal treatment effect of two dimensional siloxene sheets and the origin of superior electrochemical energy storage performances
4.2.1. Introduction 203
4.2.2 Experimental section 205
4.2.2.1 Topochemical transformation of CaSi2 into siloxene sheets 205
4.2.2.2 Thermal annealing of siloxene sheets 205
4.2.2.3 Preparation of electrodes 206
4.2.2.4 Fabrication and testing of symmetric supercapacitor device 206
4.2.3. Results and discussion 207
4.2.3.1 Physicochemical characterization 207
4.2.3.2 Electrochemical characterization 214
4.2.3 Conclusion 224
4.2.4 References 225 Chapter
4.3 Carbothermal conversion of siloxene sheets into silicon-oxy-carbide lamellas: An advanced electrode for high-performance supercapacitors
4.3.1 Introduction 234
4.3.2. Experimental section 235
4.3.2.1 Topochemical transformation of CaSi2 into siloxene sheets 235
4.3.2.3 Preparation of electrodes 235
4.3.2.4 Fabrication of coin-cell type symmetric supercapacitor device 236
4.3.3 Results and discussion 236
4.3.3.1 Physicochemical characterization 236
4.3.3.2 Electrochemical characterization 239
4.3.4 Conclusion 245
4.3.5 References 247
CHAPTER 5 SYNTHESIS OF LAYERED TRANSITION METAL CHALCOGENIDES (MoS2, MoSe2 AND ReS2) AND FABRICATION OF SYMMETRIC CAPACITOR USING ORGANIC/IONIC LIQUID ELECTROLYTE
Chapter 5.1 High Energy Symmetric Supercapacitor Based On Mechanically Delaminated Few-Layered MoS2 Sheets In Organic Electrolyte
5.1.1. Introduction 254
5.1.2. Experimental section 256
5.1.2.1 Preparation of few layered MoS2 256
5.1.2.2 Fabrication and electrochemical characterization of MoS2 SSC device 256
5.1.3. Results and discussion 257
5.1.3.1 Physicochemical characterization 257
5.1.3.2 Electrochemical characterization 261
5.1.4. Conclusion 269
5.1.5 References 270
CHAPTER 5.2 Two-Dimensional Molybdenum Diselenide Nanosheets As A Novel Electrode Material For Symmetric Supercapacitors Using Organic Electrolyte
5.2.1. Introduction 282
5.2.2. Experimental section 284
5.2.2.1 Synthesis of molybdenum selenide (MoSe2) nanosheets 284
5.2.2.2 Fabrication and electrochemical characterization of MoSe2 SSC 285
5.2.3. Results and discussion 286
5.2.3.1 Physicochemical characterization 286
5.2.3.2 Electrochemical characterization 291
5.2.4. Conclusion 297
5.2.5 References 299
CHAPTER 5.3 High Performance Electrochemical Energy Storage Device Using Hydrothermally Prepared Rhenium Disulfide Nanostructures
5.3.1. Introduction 309
5.3.2. Experimental section 311
5.3.2.1 Preparation of rhenium disulfide (ReS2) nanostructures 311 5.3.2.2 Electrochemical studies 311 5.3.3. Results and discussion 312
5.3.3.1 Physicochemical characterization 312
5.3.3.2 Electrochemical characterization 317
5.3.4. Conclusions 327
5.3.5 References 329
CHAPTER 6 SELF-CHARGING SUPERCAPACITOR POWER CELL: ENERGY CONVERSION AND STORAGE A High Efficacy Self-Charging MoSe2 Solid-State Supercapacitor Using Electrospun Nanofibrous Piezoelectric Separator with Ionogel Electrolyte
6.1. Introduction 341
6.2. Experimental section 344
6.2.1. Preparation of sodium niobate 344
6.2.2 Electrospinning of PVDF/NaNbO3 nanofibers for energy harvesting 345
6.2.3 Preparation of molybdenum diselenide nanosheets for energy storage 345
6.2.4 Preparation ionogel electrolyte 345
6.2.5 Fabrication & testing of self-charging supercapacitor power cell 345
6.3. Results and discussion 346
6.3.1 Physicochemical characterization of Energy harvester material 346
6.3.2 Energy harvester analysis 349
6.3.3 Physicochemical characterization of Energy storage material 351
6.3.4 Electrochemical characterization of Energy storage 353
6.3.5 Self-charging characteristics 357
6.4. Conclusion 362
6.5 References 363
CHAPTER-7 Conclusions and Future Work
7.1. Conclusions 367
7.2. Suggestions for the Future Work 370
APPENDIX A: List of Publications 371
APPENDIX-B: Conference Presentations 376
Degree
Doctor
Publisher
제주대학교 대학원
Citation
Parthiban Pazhamalai. (2019). Development of Advanced Nanostructured Electrode Materials for High-Performance Supercapacitors and Self-Charging Power Cell
Appears in Collections:
Faculty of Applied Energy System > Mechatronics Engineering
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.