제주대학교 Repository

Development of flexible composite film based hybrid energy harvesters for self-powered sensors

Metadata Downloads
Abstract
비용 효율적인 비전통적 에너지 원을 사용하여 소형 전자 기기, 휴대용 및 착용 가능한 전자 기기에 전원을 공급하기 위한 지속 가능한 전원을 개발하는 것은 빠르게 성장하는 전자 분야에서 여전히 중요한 과제이다. 전자 산업의 발전으로 전자 기기의 크기가 줄어들어, 필요한 전력 또한 줄어들었다. 전자 디스플레이, 생의학 및 이식 가능한 장치와 같이 다양한 간단한 기계장치에는 마이크로 와트에서 밀리와트 범위의 전력이 필요하다. 기존 전자 기기는 배터리를 사용하여 전원을 공급하기 때문에 빈번한 교체가 필요하여 사용자의 불편뿐만 아니라 환경오염도 야기한다. 배터리로 인한 단점을 극복하기 위한 안정적인 에너지 수확 기술은 환경에서 사용 가능한 에너지를 수확 할 수 있다. 환경에서 이용할 수 있는 매우 풍부한 에너지원은 인체 운동, 진동 및 차량 운동에서 생성 될 수 있는 기계적 에너지이다. 이러한 기계적 에너지는 정전기 유도 [Triboelectric nanogenerators (TENG)], 전자기 유도 [EMG] 및 압전 효과 [Piezoelectric nanogenerator (PENG)]를 사용하는 나노 발전기를 사용하여 유용한 전기 에너지로 변환 될 수 있다. 개별 xxxv TENG, PENG 및 EMG 로 제작 된 나노발전기는 전기 출력 성능으로 인해 다양한 응용 분야에 크게 사용할 수 없다. 이 논문은 이러한 문제를 극복하기 위해 단일 장치 구조에서 TENG-PENG 구성 요소와 단일 하이브리드 장치의 TENG-EMG 구성 요소로 구성된 하이브리드 에너지 수확기를 소개한다. 하이브리드 에너지 수확기는 향상된 전력 밀도로 전압 및 전류 측면에서 높은 전기 출력을 생성한다. 압전 복합 필름으로 만든 TENGPENG 결합 하이브리드 장치는 장치에 기계적 힘을 가하는 유사한 메커니즘을 사용하여 마찰 전기 구성 요소와 압전 구성 요소를 동시에 활성화한다. 메커니즘에서, 장치에 가해지는 힘은 쌍극자가 단일 방향으로 배향하여 압전 전위를 생성하도록 유도하고, 다른 한편으로 복합 필름 상에 발생된 표면 전하는 마찰 전기 효과를 발생시킨다. 결합된 전기 출력은 개별 TENG 및 PENG 구성 요소와 비교할 때보다 더 높다. 복합 필름은 칼륨 나트륨 니오 베이트 (K0.5Na0.5NbO3)와 같은 압전 나노 입자 및 폴리 디메틸 실록산 (PDMS) 및 폴리 비닐 리덴 플루오 라이드 (PVDF)와 같은 중합체를 갖는 이중 시스템 (K0.5Na0.5NbO3- BaTiO3) 나노 입자로 제조된다. 이를 위해 바이오 폴리머 계 압전 재료인 콜라겐 xxxvi 또한 전기 성능이 연구되었다. 마찬가지로 TENG-EMG 하이브리드 발전기도 정전기 효과 및 전자기 유도 효과를 모두 발휘하였으며 자석이 자성입자로 사용되어 제작되었고 전기 출력 성능이 연구되었다. 또한 동일한 기계적 운동으로 두 구성 요소가 모두 작동되었으며, 결합된 성능은 높았다. 제조된 장치는 차량 및 인체 운동에서 발생하는 폐 기계 에너지 소거, 전력 소비가 적은 침입자 식별 시스템, 수면 모니터링 시스템, 습도 센서 및 지진 감지와 같은 다양한 응용 분야에 사용되었다. 따라서 하이브리드 에너지 수확기는 미래의 전자, 센서 및 사물 인터넷 분야에서 매우 안정적이고 깨끗한 전원으로 발전할 것이다
Developing a sustainable power source for powering small electronic devices, portable and wearable electronics using a cost-effective unconventional energy source remains a significant challenge in the rapidly growing electronic field. The advancement in electronics industry makes the electronic gadgets shrinking in size, which eventually makes its power requirement less. Various gadgets require power in the range of microwatts to mill watts such as electronic displays, biomedical and implantable devices. The existing electronics gadgets use batteries for powering them, which creates inconvenience to environment due to pollution as well as for the users because it requires frequent replacement. To overcome the drawbacks faced by batteries, a reliable energy harvesting technology can harvest the energy which is available in the environment. The highly abundant energy source available in the environment is the mechanical energy that can be produced from human body motions, vibrations and vehicle motions. This mechanical energy can be converted into useful electrical energy by the use of nanogenerators utilizing electrostatic induction [Triboelectric nanogenerators (TENG)], electromagnetic induction [electromagnetic generators (EMG)] and piezoelectric effects [Piezoelectric nanogenerator (PENG)]. The nanogenerator made of individual TENG, PENG, and EMG is not highly capable in using for a wide variety of applications due to the electrical output performance. To overcome the problems, this thesis introduces a hybrid energy harvester that is made of TENG-PENG components in a single device structure and TENG-EMG components as a single hybrid device. The hybrid energy harvester generates high electrical output in terms of both voltage and current with improved power density. The TENG-PENG combined hybrid device made of piezoelectric composite film uses similar mechanism of applying mechanical force on the device, which activates both triboelectric and piezoelectric components simultaneously. In mechanism, the force applied on the device induces the dipoles to orient in a single direction to generate the piezoelectric potential, and on the other hand the surface charges developed on the composite film generate triboelectric effect. The combined electrical output is higher when compared to the individual TENG and PENG components. The composite film is made of piezoelectric nanoparticles such as potassium sodium niobate (K0.5Na0.5NbO3) and its dual systems (K0.5Na0.5NbO3-BaTiO3) nanoparticles with the polymers such as polydimethylsiloxane (PDMS) and polyvinylidene fluoride (PVDF). To this, a biopolymer-based piezoelectric material; collagen is also studied with its electrical performance. Similarly, the TENGEMG hybrid generator also works on both electrostatic effect, and electromagnetic induction effect have also been fabricated using magnet as well as magnetic particles and studied its electrical output performances. Here also, both the components were activated upon the same mechanical motion, and the combined performance is high. The fabricated device had been used for various applications such as scavenging waste mechanical energy from vehicle and human body motion, zero power consuming intruder identification system, sleep monitoring system, humidity sensor, and seismic detection. Hence, the hybrid energy harvester paves way as a highly reliable and clean power source in future in the field of electronics, sensors, and internet of things.
Author(s)
Venkateswaran Vivekananthan
Issued Date
2020
Awarded Date
2020. 2
Type
Dissertation
URI
http://dcoll.jejunu.ac.kr/common/orgView/000000009467
Affiliation
제주대학교 대학원
Department
대학원 메카트로닉스공학과
Advisor
Kim, Sang jae
Table Of Contents
Contents
Contents i
Nomenclature xiii
List of tables xiv
List of figures xv
Abstract-hangul xxxiv
Abstract xxxvii
CHAPTER I
INTRODUCTION
1.1 Background 1
1.2 Necessity of this research 3
1.3 Types of mechanical energy harvesters 4
1.3.1 Triboelectric nanogenerators 4
1.3.2 Piezoelectric Nanogenerators 5
1.3.3 Electromagnetic generator 6
1.4 Need for hybrid generator 6
1.5 Self-powered sensors/systems 7
1.6 Objective and scope of this thesis 9
1.7 References 12
ii
CHAPTER II
Materials, Methods and Measurement Techniques
2.1 Chemical details 15
2.2 Synthesis methodology 17
2.2.1 Solid state reaction (SSR) 17
2.2.2 Sonochemical method 17
2.3 Measurement techniques and specifications 18
2.3.1 Field emission scanning electron microscope (FE-SEM) 18
2.3.2 Energy dispersive x-ray spectroscopy 18
2.3.3 X-ray diffraction (XRD) 18
2.3.4 Raman spectroscopy 19
2.3.5 X-ray photoelectron spectroscopy (XPS) 19
2.3.6 Fourier transform infrared spectroscopy (FT-IR) 19
2.3.7 Ferroelectric hysteresis tester (P-E loop analysis) 20
2.3.8 Transmission electron microscopy (TEM) 20
2.4 Device fabrication techniques 20
2.4.1 Piezoelectric nanogenerator (PNG) 20
2.4.2 Triboelectric nanogenerator (TENG) 21
iii
2.4.3 Electromagnetic generator (EMG) 21
2.4.4 Hybrid generator 21
2.5 Electrical characterizations 22
2.5.1 Electrical output measurements 22
2.5.2 Semiconductor analyzer 22
2.6 Calculation of electrical parameters 22
2.6.1 Power density 23
2.6.2 Spontaneous polarization 23
2.6.4EMG output 23
2.6.5TENG output 24
2.7 References 25

CHAPTER - III
Biocompatible collagen-nanofibrils: An approach for sustainable
energy harvesting and battery-free humidity sensor applications
3.1 Introduction 28
3.2 Experimental section 30
3.2.1 Fabrication of BP-NG device 30
3.2.2 Fabrication of collagen-based humidity sensor 30
3.2.3 Measurement systems 30
3.3 Results and discussions 31
3.3.1 Structural and morphological analysis of CPNG device 31
3.3.2 Capacitors charging-discharging, Load resistance
analysis and stability test of CPNG device
37
3.3.3 I-V characteristics of Collagen film under humidity
conditions
38
3.3.4 Detailed Humidity sensing mechanism 40
3.4 Conclusion 43
3.5 References 44
v
CHAPTER IV
4.1 A flexible, planar energy harvesting device for scavenging road side
waste mechanical energy via synergistic piezoelectric response of
K0.5Na0.5NbO3-BaTiO3/PVDF composite films
4.1.1 Introduction 54
4.1.2 Experimental details 57
4.1.2.1 Synthesis of (1-x) (K0.5 Na0.5) NbO3- xBaTiO3 nanoparticles 57
4.1.2.2 Composite film (CF) and piezoelectric nanogenerator (PNG)
Fabrication 57
4.1.2.3 Measurement System 58
4.1.3 Results and Discussion 58
4.1.4 Conclusion 70
4.1.5 References 71
vi
4.2 Zero-Power Consuming Intruder Identification System by
Enhanced Piezoelectricity of K0.5Na0.5NbO3 using Substitutional Doping
of BTO NPs
4.2.1 Introduction 80
4.2.2 Experimental details 82
4.2.2.1 Synthesis of KNN and 0.98 KNN- 0.02 BTO
nanoparticles
82
4.2.2.2 Fabrication of PDMS /0.98 KNN-0.02 BTO
piezoelectric composite film (CF) and a nanogenerator
83
4.2.2.3 Measurement system 84
4.2.3 Results and discussion 84
4.2.4 Conclusion 98
4.2.5 References 99
vii
4.3 A Flexible Piezoelectric Composite Nanogenerator Based on Doping
Enhanced Lead-Free Nanoparticles
4.3.1 Introduction 107
4.3.2 Experimental details 108
4.3.2.1 Synthesis of (1-x) KNN-x BTO NPs and
nanogenerator device fabrication
108
4.3.3 Results and discussion 109
4.3.4 Conclusion 113
4.3.5 References 114
viii
CHAPTER V
A Highly Reliable, Impervious and Sustainable Triboelectric
Nanogenerator as a Zero-power Consuming Active Pressure Sensor
5.1 Introduction 118
5.2 Experimental section 121
5.2.1 Fabrication of silicone elastomer film by soft
lithography technique121
5.2.2 Fabrication of water-resistant SE-TENG device 121
5.2.3 Characterization and electrical measurement 122
5.3 Results and discussions 123
5.4 Conclusions 133
5.5 References 135

CHAPTER VI
Substantial Improvement on Electrical Energy Harvesting by
Chemically Modified/Sandpaper-based Surface Modification in Microscale for Hybrid Nanogenerators
6.1 Introduction 142
6.2 Experimental details 144
6.2.1 Synthesis of nanoparticles and device fabrication 144
6.2.2 Characterization and electrical measurements 145
6.3 Results and discussions 146
6.4 Conclusions 156
6.5 References 157
x
CHAPTER VII
7.1 A Sliding mode Contact Electrification based TriboelectricElectromagnetic Hybrid Generator for Small-Scale Biomechanical
Energy Harvesting
7.1.1 Introduction 163
7.1.2 Device fabrication and measurements 165
7.1.3 Results and discussion 166
7.1.4 Conclusions 174
7.1.5 References 175
7.3 Fe2O3 Magnetic Particles derived Triboelectric-Electromagnetic
Hybrid Generator for Zero-Power Consuming Seismic Detection
7.2.1 Introduction 181
7.2.2 Experimental details 184
7.2.2.1 Characterization 185
7.2.2.2 MPMP-HG-HG Device fabrication and
Electrical measurement
185
7.2.3 Results and discussion 186
7.2.4 Conclusions 200
7.2.5 References 201
xi
CHAPTER VIII
Summary and Future Prospective
8.1 Summary 207
8.2 Suggestions for future improvement 212
APPENDIX A: List of publications 213
APPENDIX B: List of Conferences 216
Appendix: List of awards 224
Appendix: Journal cover page 226
Declaration 227
Degree
Doctor
Publisher
제주대학교 대학원
Citation
Venkateswaran Vivekananthan. (2020). Development of flexible composite film based hybrid energy harvesters for self-powered sensors
Appears in Collections:
Faculty of Applied Energy System > Mechatronics Engineering
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.