제주대학교 Repository

Aqueous Extract of Freeze-dried Protaetia brevitarsis Larvae-Induced Immunostimulation and Bone Formation

Metadata Downloads
Alternative Title
굼벵이 열수추출의 면역증강효과와 뼈형성 촉진
Abstract
흰 반점 꽃 풍뎅이과(Protaetia brevitarsis) 유충은 잠재적인 영양 보충제이며 영양과 미네랄이 풍부하고 신경 보호 및 항산화 활성을 가지고 있어 전통 아시아 약초에서 사용되었습니다. 이 연구의 첫 번째 단계에서 우리는 동결 건조된 P. brevitarsis 유충(AEPB)의 수성 추출물이 RAW 264.7 대식세포에서 면역 자극을 촉진한다는 것을 발견했습니다. 800㎍/mL AEPB 미만에서는 유의한 세포독성이 관찰되지 않았다. 또한, AEPB 처리는 조절 유전자의 상향 조절을 통해 산화질소(NO), 프로스타글란딘 E2(PGE2), 인터루킨(IL)-6 및 IL-12의 생성을 향상시켰습니다. AEPB는 또한 핵인자-κB(NF-κB)의 핵전위를 촉진시켰고, NF-κB 활성화 억제제인 pyrrolidine dithiocarbamate는 AEPB에 의해 유도되는 iNOS(inducible NO synthase), cyclooxygenase-2(COX- 2), IL-6 및 IL-12, 이는 AEPB가 NF-κB 신호전달을 활성화함으로써 RAW 264.7 대식세포에서 NO 및 PGE2와 같은 면역자극제와 IL-6 및 IL-12와 같은 전염증성 사이토카인의 생성을 촉진함을 나타냅니다. 좁은 길. 더욱이, AEPB는 Toll-유사 수용체 4(TLR4)의 세포외 발현을 상향조절하고, 이어서 골수 분화 1차 반응 88(MyD88) 및 IL-1 수용체 관련 키나제 4(IRAK4) 발현을 증가시켰으며, 이는 AEPB가 NF-κB를 활성화했음을 나타냅니다. TLR4 매개 MyD88 및 IRAK4 축을 통한 신호 전달 경로. 종합적으로, 이 연구는 AEPB가 대식세포 매개 면역 반응을 자극하기 위한 유망한 영양 보충제라는 증거를 제공합니다.
연구의 두 번째 단계에서 우리는 AEPB가 조골 세포 분화에서 확인되지 않았기 때문에 AEPB가 전 조골 세포 MC3T3-E1 세포에서 조골 세포 분화에 작용할 수 있는지 여부를 목표로 삼았습니다. 다음으로, 우리는 AEPB가 골아세포 MC3T3-E1 세포에서 높은 수준의 광물화와 함께 런트 관련 전사 인자 2(RUNX2), 오스테릭스(OSX) 및 알칼리성 포스파타제(ALP)를 포함한 골형성 유전자의 발현을 고도로 촉진한다는 것을 발견했습니다. 더욱이, AEPB는 골형성 유전자 발현을 수반하는 제브라피쉬 유충의 척추 형성을 가속화했습니다. FH535를 이용한 Wnt/β-카테닌 신호전달 경로의 억제는 AEPB에 의한 골형성 유전자 발현과 척추 형성을 억제했는데, 이는 AEPB가 Wnt/β-카테닌 신호전달 경로를 활성화시켜 골형성을 자극했음을 시사한다. 종합하면, 이 연구는 AEPB가 조골세포 분화 및 뼈 형성을 위한 유망한 보충제임을 확인합니다. 그럼에도 불구하고, AEPB가 골다공증과 같은 골흡수 질환을 억제하는지 여부는 고등 동물 모델에서 평가되어야 한다.
White-spotted flower chafer (Protaetia brevitarsis) larvae are a potential nutritional supplement and have been used in traditional Asian herbal medicine with plenty of nutrients and minerals and possess neuroprotective and antioxidative activity. In the first phase of this study, we found that aqueous extract of freeze-dried P. brevitarsis larvae (AEPB) promotes immunostimulation in RAW 264.7 macrophages. No significant cytotoxicity was observed below 800 μg/mL AEPB. Moreover, AEPB treatment enhanced the production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin (IL)-6, and IL-12 through the upregulation of their regulatory genes. AEPB also promoted the nuclear translocation of nuclear factor-κB (NF-κB), and pyrrolidine dithiocarbamate, an inhibitor of NF-κB activation, remarkably prevented the expression of AEPB-induced inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), IL-6, and IL-12, indicating that AEPB promotes the production of immunostimulants such as NO and PGE2 and pro-inflammatory cytokines such as IL-6 and IL-12 in RAW 264.7 macrophages by activating the NF-κB signaling pathway. Moreover, AEPB upregulated the extracellular expression of Toll-like receptor 4 (TLR4) and subsequently increased myeloid differentiation primary response 88 (MyD88) and IL-1 receptor-associated kinase 4 (IRAK4) expression, which indicates that AEPB activated the NF-κB signaling pathway through the TLR4-mediated MyD88 and IRAK4 axis. Collectively, this study provides evidence that AEPB is a promising nutritional supplement for stimulating macrophage-mediated immune responses.
In the second phase of the study, we targeted whether AEPB could act on osteoblast differentiation in pre-osteoblast MC3T3-E1 cells, since AEPB has not been identified in osteoblast differentiation. Next, we found that AEPB highly promotes expression of osteogenic genes including runt-related transcription factor 2 (RUNX2), osterix (OSX), and alkaline phosphatase (ALP) along with high level of mineralization in preosteoblast MC3T3-E1 cells. Moreover, AEPB accelerated vertebral formation in zebrafish larvae accompanied by the osteogenic gene expression. Inhibition of the Wnt/β-catenin signaling pathway using FH535 suppressed AEPB-induced osteogenic gene expression and vertebral formation, which indicates that AEPB stimulated osteogenesis by activating the Wnt/β-catenin signaling pathway. Taken together, this study confirms that AEPB is a promising supplement for osteoblast differentiation and bone formation. Nevertheless, whether AEPB inhibits bone resorption diseases such as osteoporosis should be evaluated in higher animal models.
Author(s)
Jayasingha Arachchige Chathuranga Chanaka Jayasingha
Issued Date
2022
Awarded Date
2022. 2
Type
Dissertation
URI
https://dcoll.jejunu.ac.kr/common/orgView/000000010470
Alternative Author(s)
자야싱하 아라치치게 차투랑가 차나카 자야싱하
Affiliation
제주대학교 대학원
Department
대학원 해양생명과학과
Advisor
Kim, Gi Young
Table Of Contents
Chapter 1 1
An aqueous extract of freeze-dried Protaetia brevitarsis larvae enhances immunostimulatory activity in RAW 264.7 macrophages by activating the NF-κB signaling pathway 1
1.1 Introduction 3
1.2 Materials and methods 4
1.2.1 Reagents and antibodies 4
1.2.2 Cell culture and cell viability assay 5
1.2.3 NO assay 5
1.2.4 Enzyme-linked immunosorbent assay (ELISA) 6
1.2.5 Isolation of total RNA from RAW 264.7 macrophage and RT-PCR 6
1.2.6 Western blotting 7
1.2.7 Immunofluorescence staining of p65 and TLR4 7
1.2.8 Statistical analysis 8
1.3 Results 8
1.3.1 No evidence of cytotoxic potential is observed in AEPB-treated RAW 264.7 macrophages 8
1.3.2 AEPB induces the expression of iNOS and COX-2 in RAW 264.7 macrophages and, in turn, increased the secreted levels of NO and PGE2 9
1.3.3 AEPB induces the expression and secretion of pro-inflammatory cytokines such as IL-6 and IL-12 in RAW 264.7 macrophages 12
1.3.4 AEPB activates nuclear translocation of NF-κB, resulting in the expression of immunostimulant genes 13
1.3.5 AEPB stimulates the TLR4-mediated signaling pathway in RAW 264.7 macrophages 16
1.4 Discussion 17
1.5 Conclusions 18
Chapter 2 20
An Aqueous Extract of Freeze-dried P. brevitarsis Larvae Promotes Osteogenic Gene Expression and Bone Formation by Activating β-Catenin 20
2.1 Introduction 22
2.2 Materials and Methods 24
2.2.1 Preparation of AEPB 24
2.2.2 Reagents and antibodies 24
2.2.3 Cell culture and Flow cytometry 25
2.2.4 Alizarin red staining 25
2.2.5 Alkaline phosphatase (ALP) activity 25
2.2.6 Reverse transcription-polymerase chain reaction (RT-PCR) 26
2.2.7 Protein extraction and western blotting 27
2.2.8 Bone mineralization in zebrafish larvae 27
2.2.9 Statistical analysis 28
2.3 Results 28
2.3.1 No cytotoxicity in preosteoblast MC3T3-E1 cells was shown at low concentrations of AEPB 28
2.3.2 AEPB promotes ALP activity and calcium deposition in preosteoblast MC3T3-E1 cells 29
2.3.3 AEPB enhances expression of osteogenic markers including RUNX2, OSX, and ALP 30
2.3.4 AEPB promotes bone formation in zebrafish larvae accompanied by high expression of osteogenic genes including RUNX2a, OSX, and ALP 31
2.3.5 AEPB promotes osteoblast differentiation and bone formation by activating the Wnt/β-catenin pathway 33
2.4 Discussion 35
2.5 Conclusions 37
Bibilography 38
Degree
Master
Publisher
제주대학교 대학원
Appears in Collections:
General Graduate School > Marine Life Sciences
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.