제주대학교 Repository

The Multi-target Approach of Marine Polyphenolic Compounds Against SARS-CoV-2; Attenuates SARS-CoV-2 Cell Entry, Proliferation, and Subsequent Cytokine Storm in the Host.

Metadata Downloads
Abstract
2019년 코로나바이러스 감염증 (COVID-19)이라는 SARS-CoV-2 바이러스에 의해 유발된 최근의 대유행으로 인해 세계적인 보건 문제가 제기되었습니다. 이 코로나바이러스는 인플루엔자, 아데노바이러스, 조류 인플루엔자, 중증급성호흡기증후군 코로나바이러스(SARS-CoV), 중동호흡기증후군 코로나바이러스(MERS-CoV)와는 다른 독특한 특징을 가지고 있었습니다. SARS-CoV-2의 실제 감염 방식은 아직 완전히 이해되지 않았으며, 바이러스가 인간을 주요 숙주로 선택하는 이유와 어떻게 기생적 면역체계를 우회하는지 등이 포함됩니다. 바이러스의 침입 메커니즘은 호흡기계를 통해 재채기와 기침으로 인한 호흡기 도매체를 통해 몸 속으로 들어가는 것으로 발견되었습니다. SARS-CoV-2는 단백질 캡시드로 덮인 당단백질에 앵커된 가시 단백질로 구성되어 있습니다. 이 가시 단백질은 바이러스가 대상 세포로 침입하는 데 관여합니다. SARS-CoV-2가 숙주 세포로의 침입은 감염성과 병원성 결정에 있어서 중요한 요소입니다. SARS-CoV-2의 가시 단백질은 먼저 앵지오텐신 전환효소 2 (ACE-2)라는 세포 표면 수용체에 결합하여 바이러스와 연결됩니다. 이후, 바이러스는 엔도좀으로 들어가며, 마지막으로 바이러스 막이 리소솜 막과 융합합니다. 따라서 ACE-2: SARS-CoV-2 가시 단백질의 상호 작용을 방해할 수 있는 특정 화합물이 있다면 SARS-CoV-2 세포 침입 메커니즘에 대항하여 사용될 수 있는 잠재력을 가지고 있습니다. SARS-CoV-2의 우수한 약물 표적 중 하나는 폴리단백질 처리에 중요한 역할을 하는 프로테아제인 NSP 3과 NSP 5입니다. 이들은 바이러스의 복제와 생존에 필수적인 기능적 비구조 단백질을 생성하기 위한 역할을 합니다. Nsp5(또는 3CLpro라고도 알려짐)는 복제효소 다발 단백질(1ab)을 11개의 다른 부위에서 가수분해합니다. 그 결과물들은 바이러스의 숙주 세포 내에서의 생존과 복제에 필요합니다. 파파인류 프로테아제(PLpro)는 바이러스 다발 단백질을 분해하고 염증과 항바이러스 우비퀴틴 유사 단백질 수정을 되돌립니다. 따라서 SARS-CoV-2 PLpro를 표적으로 하는 약물은 COVID-19의 치료 또는 예방에 효과적으로 사용될 수 있으며, 바이러스 부하를 감소시키고 기원적 면역 반응을 회복시킬 수 있습니다. SARS-CoV-2의 감염과 복제는 복잡한 메커니즘으로, COVID-19 치료는 다중 표적 접근법이 가장 적절한 방법임을 시사합니다. 해조류로부터 얻은 생체 활성 성분은 천연물 연구에 새로운 통찰력을 제공해왔습니다. 본 연구는 해조류로부터 분리된 천연물을 사용하여 3CLpro, PLpro 및 SARS-CoV-2 세포 침입 메커니즘을 통해 SARS-CoV-2를 억제하는 것을 목표로 합니다. 분자 도킹은 3CLpro, PLpro 및 ACE-2 단백질 구조를 기반으로 선택된 천연물을 초기에 스크리닝하는 데 사용되었습니다. 또한, 얻어진 화합물들은 억제 활성을 확인하기 위해 생물학적 실험을 위해 분리되고 사용되었습니다. 우선, 화합물들의 바이러스 세포 침입 메커니즘에 대한 억제력을 평가하기 위해 in-vitro 실험 키트를 사용했습니다. 그런 다음 이러한 결과는 세포 기반 실험을 통해 추가적으로 확인되었습니다. 여기에서 저자들은 ACE-2가 과발현된 HEK293T 세포와 바이러스 막의 가시 단백질 및 염색체와 발광 효소 유전자로 이루어진 SARS-CoV-2 의사 바이러스를 개발했습니다. 저자는 qPCR에서 절대 양 측정 방법을 사용하여 바이러스 수량을 계산하는 빠른 방법을 도입했습니다. 이러한 결과는 준어류체를 이용한 in-vivo 모델을 사용하여 더욱 견고하게 확인되었습니다. 또한, 이러한 화합물들의 3CLpro 및 PLpro에 대한 억제력은 in-vitro 실험 키트를 사용하여 평가되었으며, 이후 소개된 새로운 세포 기반 빠른 방법을 통해 추가적으로 확인되었습니다. 마지막으로, 이러한 화합물들의 가시 단백질 유도 염증에 대한 억제력은 in-vitro 및 in-vivo 모델을 사용하여 평가되었습니다. 이 연구에서 우리는 처음으로 갈색 해조류로부터 분리된 폴리페놀 화합물의 SARS-CoV-2에 대한 억제 작용의 잠재력을 보고합니다. 이러한 결과는 IPA, Dieckol, DPHC 및 Eckmaxol이 뛰어난 억제력을 보였음을 보여줍니다.|Global health concerns have been raised by the most recent coronavirus pandemic of 2019 (COVID-19) brought on by the SARS-CoV-2 virus. The coronavirus had notable distinctions from other respiratory infections like influenza, adenovirus, and avian influenza and the severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV. SARS-CoV-2's real mode of infection still needs to be fully understood, including why humans are the virus' primary host and how it bypasses the innate immune system. The viral entry mechanism has been found, and it involves respiratory droplets from sneezing and coughing to enter the body through the respiratory system.
SARS-CoV-2 consists of a protein capsid covered by glycoprotein with anchored spike proteins. These spike proteins initiate the viral entry into target cells. Entry of SARS-CoV-2 into the host cell is an essential factor in determining infectivity and pathogenesis. SARS-CoV-2 spike protein initially binds to the cell surface receptor called angiotensin-converting enzyme 2 (ACE-2), known as viral attachment. Subsequently, it enters the endosome, and finally viral membrane fuses with the lysosomal membrane. Thus, if some particular compound can interfere with the interaction of ACE-2: RBD of the spike protein of SARS-CoV-2, it has the potential for use against the SARS-CoV-2 cell entry mechanism.
Among the excellent drug targets of SARS-CoV-2 are its proteases (NSP 3 and NSP 5), which play a vital role in polyprotein processing, giving rise to functional non-structural proteins essential for viral replication and survival. Nsp5 (also known as 3CLpro) hydrolyzes replicase polyprotein (1ab) at eleven different sites. The resulting products are necessary for the survival and replication of the virus in the host cell. The papain-like protease (PLpro) cleaves the viral polyprotein and reverses inflammatory and anti-viral ubiquitin-like ISG15 protein modifications. Therefore, drugs targeting SARS-CoV-2 PLpro are effective as treatments or prophylaxis for covid-19, reducing viral load and reinstating innate immune responses.
The SARS-CoV-2 infection and replication are complex mechanisms, suggesting that COVID-19 therapy with a multi-targeting approach is the right way. Bioactive components from marine algae have provided new insight into natural product research. The present study aims to inhibit SARS-CoV-2 through 3CLpro, PLpro, and SARS-CoV-2 cell entry mechanisms by natural products isolated from marine algae. Molecular docking was utilized to initially screen selected natural products based on the 3CLpro, PLpro, and ACE-2 protein structures. Moreover, the resulting compounds were isolated and used for biological assays to confirm the inhibition activity. Initially, the inhibitory potential of compounds against the viral cell entry mechanism was evaluated using an in-vitro assay kit. Then these results were further confirmed using a cell-based assay. Here, authors developed an ACE-2 overexpressed HEK293T cell and SARS-CoV-2 pseudovirus that consists of spike protein on the viral envelope and mCherry and firefly luciferase genes. The author introduced a rapid method to calculate the viral titer using an absolute quantification method in qPCR. These results were further solidified using a zebrafish in-vivo model. The inhibitory potential of these compounds against 3CLpro and PLpro was also evaluated using an in-vitro assay kit and further confirmed through a novel cell-based rapid method. Finally, the inhibitory potential of these compounds against spike protein-induced inflammation was also evaluated using in-vitro and in-vivo models. In this study, we report for the first time the potential of polyphenolic compounds isolated from brown marine algae as inhibitors against SARS-CoV-2 through the main three drug targets. These results show that IPA, Dieckol, DPHC, and Eckmaxol showed remarkable inhibitory potential.
Author(s)
Nagahawatta DinethPramuditha
Issued Date
2023
Awarded Date
2023-08
Type
Dissertation
URI
https://dcoll.jejunu.ac.kr/common/orgView/000000011328
Affiliation
Graduate School of Jeju National University
Department
대학원 해양생명과학과
Advisor
Jeon You-Jin
Table Of Contents
Part I: Polyphenolic Compounds Isolated from Marine Algae Attenuate the Replication of SARS-CoV-2 in the Host Cell through a Multi-Target Approach of 3CLpro and PLpro 1
1 Introduction 2
2 Methods and Materials 6
21 Chemicals and reagents 6
22 Preparation of Receptors 6
23 Preparation of ligands 7
24 Molecular docking 9
25 Sample collection and extraction 9
26 Isolation of Dieckol 11
27 Isolation of Eckmaxol 12
28 3CLpro in-vitro cleavage inhibition assay 14
29 Isolation of Ishophloroglucin A (IPA) and Diphlorethohydroxycarmalol (DPHC) 14
210 PLpro in-vitro cleavage inhibition assay 17
211 Enzyme Kinetic Evaluation 17
212 Cell-based inhibition assay 18
2121 Cell culture maintenance 18
2122 Cell-based in-vitro evaluation 18
213 Cytopathic Effect (CPE) Reduction Evaluation 21
214 Statistical analysis 21
3 Results 22
31 Receptor and ligand preparation 22
311 Structure of 3CLpro receptor protein preparation 22
312 Structure of PLpro receptor protein preparation 24
313 Ligand preparation 26
32 Molecular docking 28
321 3CLpro enzyme 30
322 PLpro enzyme 34
33 In-vitro inhibition of marine algal compounds 38
34 Line-weaver Burk Plot 41
35 Cell-Based Inhibition of 3CLpro and PLpro 43
36 Cytopathic Effect (CPE) Reduction potential 45
4 Discussion 47
5 Conclusion 50
Part II: Polyphenolic Compounds Isolated from Marine Algae inhibit the SARS-CoV-2 cell entry mechanism via disturbing SARS-CoV-2 spike proteins and angiotensin converting enzyme interaction 51
1 Introduction 52
2 Methods and Materials 56
21 Chemicals and reagents 56
22 Preparation of Receptors 56
23 Preparation of ligands 57
24 Molecular docking 58
25 Sample collection and extraction 58
26 Inhibition assay in binding of ACE-2 receptor and SARS-CoV-2 spike protein 58
27 SARS-CoV-2 pseudovirus production 59
271 Cell culture 59
272 Gene transfection for the development of pseudovirus 59
273 Evaluating of the titter of the pseudovirus 62
274 Infection of the pseudovirus to the HEK293T-ACE-2 cells 64
28 In-vivo evaluation of the inhibitory potential of polyphenolic compounds against SARS-CoV-2 cell entry 64
281 RNA extraction, reverse transcription and RT-qPCR 66
29 Statistical analysis 66
3 Results 67
31 Receptor and ligand preparation 67
311 Structure of ACE-2 receptor protein preparation 67
312 Ligand preparation 69
32 Molecular docking 69
321 ACE-2 enzyme 71
33 In-vitro inhibition of marine algal compounds 74
34 Inhibition of SARS-CoV-2 pseudovirus cell entry 75
341 Determination of pseudovirus production and virus titter 75
35 Inhibition of SARS-CoV-2 pseudovirus cell entry in in-vivo 78
4 Discussion 80
5 Conclusion 85
Part III: Polyphenolic Compounds Isolated from Marine Algae inhibit the SARS-CoV-2 spike protein-induced cytokine storm in the host 86
1 Introduction 87
2 Methods and Materials 89
21 Chemicals and reagents 89
22 Cell culture and maintenance 89
23 Maintenance of zebrafish and larvae 90
24 Gene transfection to the A549 and HEK293T cells 90
25 Determination of Cell Viability 91
26 Evaluation of the Production of Cytokines 91
27 Gene expression analysis 91
28 Western blot evaluation 94
29 Spike protein microinjection to zebrafish 95
210 Neutral red staining 95
211 Sudan black staining 95
212 Statistical analysis 96
3 Results 97
31 Pro-inflammatory cytokine production in SARS-CoV-2 spike protein transfected A549 and HEK293T cells 97
32 Pro-inflammatory cytokine production in SARS-CoV-2 spike protein transfected A549 and HEK293T cells 100
33 Evaluation of SARS-CoV-2 spike protein-induced protein expression of NF-κB and MAPK signalling pathways 105
34 Evaluation of the effect of SARS-CoV-2 spike protein structure and ACE-2 expression in host cell to stimulatory potential od spike protein to develop inflammatory cytokines 108
35 Polyphenolic compounds inhibited the inflammatory cytokine production in the SARS-CoV-2 spike protein-induced A549 and MHS cells 110
36 Polyphenolic compounds inhibited the inflammatory cytokine and chemokine gene expression in the SARS-CoV-2 spike protein-induced A549 and MHS cells 111
37 Polyphenolic compounds inhibited the inflammatory cytokine and chemokine protein expression in the SARS-CoV-2 spike protein-induced A549 and MHS cells 113
38 In-vivo evaluation of the anti-inflammatory potential of polyphenolic compounds against SARS-CoV-2 spike protein-induced inflammation 116
4 Discussion 122
5 Conclusion 127
References 128
Concluding remarks 134
Acknowledgment 136 요약 137
Degree
Doctor
Publisher
Graduate School, Jeju National University
Citation
Nagahawatta DinethPramuditha. (2023). The Multi-target Approach of Marine Polyphenolic Compounds Against SARS-CoV-2; Attenuates SARS-CoV-2 Cell Entry, Proliferation, and Subsequent Cytokine Storm in the Host.
Appears in Collections:
General Graduate School > Marine Life Sciences
공개 및 라이선스
  • 공개 구분공개
  • 엠바고2023-08-14
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.